We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10–30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ε) is much higher than its imaginary part Im(ε) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ε ≈ Im ε in a very broad frequency range (0.2–0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

1.
F.
Qin
and
C.
Brosseau
,
J. Appl. Phys.
111
,
061301
(
2012
).
2.
P.
Kuzhir
,
A.
Paddubskaya
,
A.
Plyushch
 et al,
J. Appl. Phys.
114
,
164304
(
2013
).
3.
K.
Batrakov
,
P.
Kuzhir
,
A.
Paddubskaya
 et al,
Sci. Rep.
4
,
7191
(
2014
).
4.
P.
Kuzhir
,
N.
Volynets
,
S.
Maksimenko
 et al,
J. Nanosci. Nanotechnol.
13
(
8
),
5864
5867
(
2013
).
5.
K.
Batrakov
,
P.
Kuzhir
,
S.
Maksimenko
 et al,
Appl. Phys. Lett.
108
,
123101
(
2016
).
6.
R.
Kotsilkova
,
P.
Todorov
,
E.
Ivanov
 et al,
Carbon
100
,
355
366
(
2016
).
7.
A.
Paddubskaya
,
N.
Valynets
,
P.
Kuzhir
 et al,
J. Appl. Phys.
119
,
135102
(
2016
).
8.
O.
Kraft
and
C. A.
Volkert
,
Adv. Eng. Mater.
3
,
99
110
(
2001
).
9.
R.
Zhang
,
D.
Shilo
,
G.
Ravichandran
, and
K.
Bhattacharya
,
J. Appl. Mech.
73
,
730
736
(
2006
).
10.
K. J.
Van Vliet
and
A.
Gouldstone
,
Surf. Eng.
17
(
2
),
140
145
(
2001
).
11.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
1583
(
1992
).
12.
G. M.
Pharr
,
E. G.
Herbert
, and
Y.
Gao
,
Annu. Rev. Mater. Res.
40
,
271
292
(
2010
).
13.
E.
Ivanov
,
I.
Borovanska
,
B.
Milosheva
, and
R.
Kotsilkova
, “
Experimental nano and micro mechanics of nanostructured materials
,” in
Mechanics of Nanomaterials and Nanotechnology
, edited by
V.
Kavardjikov
,
L.
Parashkevova
, and
A.
Baltov
, Science Series (
Bulgarian Academy of Sciences
,
2012
), Part IV, Chap. 3, pp.
287
326
.
14.
R.
Saha
and
W. D.
Nix
,
Acta Mater.
50
(
1
),
23
38
(
2002
).
15.
See http://www.blackmagic3d.com/Conductive-Graphene-3D-Printing-PLA-Filament-p/grphn-175.htm for main physical properties, including volume resistivity.
16.
K.
Geng
,
F.
Yang
,
T.
Druffel
, and
E. A.
Grulke
,
Polymer
48
(
3
),
841
848
(
2007
).
17.
Z.
Wang
,
A. A.
Volinsky
, and
N. D.
Gallant
,
J. Appl. Polym. Sci.
131
(
22
),
41050
(
2014
).
18.
M. R.
VanLandingham
,
J. S.
Villarrubia
,
W. F.
Guthrie
, and
G. F.
Meyers
,
Nanoindentation of Polymers: An Overview. Macromolecular Symposia
(
NIST, US Department of Commerce
,
2001
), pp.
15
43
.
19.
C.
Xiang
 et al,
Ceram. Int.
33
,
1293
(
2007
).
20.
A.
Fletcher
,
M. C.
Gupta
,
K. L.
Dudley
, and
E.
Vedeler
,
Comput. Sci. Technol.
70
,
953
(
2010
).
21.
A. C.
Xiang
,
Y.
Pan
,
X.
Liu
,
X.
Sun
,
X.
Shi
, and
J.
Guo
,
Appl. Phys. Lett.
87
,
123103
(
2005
).
22.
M. V.
Shuba
 et al,
Phys. Rev. B
88
,
045436
(
2013
).
23.
D. K.
Hale
,
J. Mater. Sci.
11
,
2105
(
1976
).
24.
A. P.
Roberts
and
M. A.
Knackstedt
,
Phys. Rev. E
54
,
2313
(
1996
).
25.
S.
Torquato
,
Int. J. Solids Struct.
37
(
1–2
),
411
422
(
2000
).
26.
L.
Vertuccio
 et al,
Composites Part B
107
,
192
202
(
2016
).
27.
A.
Celzard
 et al,
Phys. Rev. B
53
(
10
),
6209
(
1996
).
28.
A.
Celzard
 et al,
Carbon
40
,
2801
2815
(
2002
).
29.
A.
Celzard
and
J. F.
Mareche
,
Physica A
317
,
305
312
(
2003
).
30.
T.
Arai
 et al,
J. Polym. Sci. B: Polym. Phys.
43
,
2568
(
2005
).
31.
B.
De Vivo
 et al,
J. Appl. Phys.
116
,
054307
(
2014
).
32.
D. S.
Bychanok
 et al,
Appl. Phys. Lett.
103
,
243104
(
2013
).
33.
R.
Kotsilkova
 et al,
Compos. Sci. Technol.
106
,
85
(
2015
).
You do not currently have access to this content.