Exothermic reactions between oxophilic metals and transition/post transition metal-oxides have been well documented owing to their fast reaction time scales (≈10 μs). This article examines the extent of the reaction in nano-aluminum based thermite systems through a forensic inspection of the products formed during reaction. Three nanothermite systems (Al/CuO, Al/Bi2O3, and Al/WO3) were selected owing to their diverse combustion characteristics, thereby providing sufficient generality and breadth to the analysis. Microgram quantities of the sample were coated onto a fine platinum wire, which was resistively heated at high heating rates (≈105 K/s) to ignite the sample. The subsequent products were captured/quenched very rapidly (≈500 μs) in order to preserve the chemistry/morphology during initiation and subsequent reaction and were quantitatively analyzed using electron microscopy and focused ion beam cross-sectioning followed by energy dispersive X-ray spectroscopy. Elemental examination of the cross-section of the quenched particles shows that oxygen is predominantly localized in the regions containing aluminum, implying the occurrence of the redox reaction. The Al/CuO system, which has simultaneous gaseous oxygen release and ignition (TIgnition ≈ TOxygen Release), shows a substantially lower oxygen content within the product particles as opposed to Al/Bi2O3 and Al/WO3 thermites, which are postulated to undergo a condensed phase reaction (TIgnitionTOxygen Release). An effective Al:O composition for the interior section was obtained for all the mixtures, with the smaller particles generally showing a higher oxygen content than the larger ones. The observed results were further corroborated with the reaction temperature, obtained using a high-speed spectro-pyrometer, and bomb calorimetry conducted on larger samples (≈15 mg). The results suggest that thermites that produce sufficient amounts of gaseous products generate smaller product particles and achieve higher extents of completion.

1.
S. H.
Fischer
,
M. C.
Grubelich
, and
R. I.
Iit
, in
Proceedings of the Twenty-Fourth International Pyrotechnics Seminar
(
1998
), p.
231
.
2.
E. W.
Price
and
R. K.
Sigman
,
Solid Propellant Chem. Combust. Motor Interior Ballistics
185
,
663
(
2000
).
3.
M. L.
Pantoya
and
J. J.
Granier
,
Propellants Explos. Pyrotech.
30
,
53
(
2005
).
4.
W. C.
Danen
and
J. A.
Martin
, U.S. Department Energy (Usat-C) U.S. Department Energy (Usat-C)).
5.
C. E.
Aumann
,
G. L.
Skofronick
, and
J. A.
Martin
,
J. Vacuum Sci. Technol. B
13
,
1178
(
1995
).
6.
K. S.
Martirosyan
,
L.
Wang
, and
D.
Luss
,
Chem. Phys. Lett.
483
,
107
(
2009
).
7.
R.
Thiruvengadathan
,
A.
Bezmelnitsyn
,
S.
Apperson
,
C.
Staley
,
P.
Redner
,
W.
Balas
,
S.
Nicolich
,
D.
Kapoor
,
K.
Gangopadhyay
, and
S.
Gangopadhyay
,
Combust. Flame
158
,
964
(
2011
).
8.
R. J.
Jacob
,
B. R.
Wei
, and
M. R.
Zachariah
,
Combust. Flame
167
,
472
(
2016
).
9.
A.
Prakash
,
A. V.
McCormick
, and
M. R.
Zachariah
,
Nano Lett.
5
,
1357
(
2005
).
10.
T. M.
Tillotson
,
A. E.
Gash
,
R. L.
Simpson
,
L. W.
Hrubesh
,
J. H.
Satcher
, and
J. F.
Poco
,
J. Non-Cryst. Solids
285
,
338
(
2001
).
11.
J.
Kwon
,
J. M.
Ducere
,
P.
Alphonse
,
M.
Bahrami
,
M.
Petrantoni
,
J.-F.
Veyan
,
C.
Tenailleau
,
A.
Esteve
,
C.
Rossi
, and
Y. J.
Chabal
,
ACS Appl. Mater. Interfaces
5
,
605
(
2013
).
12.
V. E.
Sanders
,
B. W.
Asay
,
T. J.
Foley
,
B. C.
Tappan
,
A. N.
Pacheco
, and
S. F.
Son
,
J. Propul. Power
23
,
707
(
2007
).
13.
K. T.
Sullivan
,
W. A.
Chiou
,
R.
Fiore
, and
M. R.
Zachariah
,
Appl. Phys. Lett.
97
,
133104
(
2010
).
14.
G. C.
Egan
and
M. R.
Zachariah
,
Combust. Flame
162
,
2959
(
2015
).
15.
S. F.
Son
,
B. W.
Asay
,
T. J.
Foley
,
R. A.
Yetter
,
M. H.
Wu
, and
G. A.
Risha
,
J. Propul. Power
23
,
715
(
2007
).
16.
G.
Jian
,
N. W.
Piekiel
, and
M. R.
Zachariah
,
J. Phys. Chem. C
116
,
26881
(
2012
).
17.
L.
Zhou
,
N.
Piekiel
,
S.
Chowdhury
, and
M. R.
Zachariah
,
J. Phys. Chem. C
114
,
14269
(
2010
).
18.
S.
Zhang
and
E. L.
Dreizin
,
J. Phys. Chem. C
117
,
14025
(
2013
).
19.
W.
Zhou
,
J. B.
DeLisio
,
X.
Wang
,
G. C.
Egan
, and
M. R.
Zachariah
,
J. Appl. Phys.
118
,
114303
(
2015
).
20.
V. I.
Levitas
,
M. L.
Pantoya
, and
S.
Dean
,
Combust. Flame
161
,
1668
(
2014
).
21.
G. C.
Egan
,
T.
LaGrange
, and
M. R.
Zachariah
,
J. Phys. Chem. C
119
(5),
2792
(
2015
).
22.
N. W.
Piekiel
,
L.
Zhou
,
K. T.
Sullivan
,
S.
Chowdhury
,
G. C.
Egan
, and
M. R.
Zachariah
,
Combust. Sci. Technol.
186
,
1209
(
2014
).
23.
R. J.
Jacob
,
G.
Jian
,
P. M.
Guerieri
, and
M. R.
Zachariah
,
Combust. Flame
162
,
258
(
2015
).
24.
K. T.
Sullivan
,
O.
Cervantes
,
J. M.
Densmore
,
J. D.
Kuntz
,
A. E.
Gash
, and
J. D.
Molitoris
,
Propellants Explos. Pyrotech.
40
,
394
(
2015
).
25.
K.
Sullivan
and
M. R.
Zachariah
,
J. Propul. Power
26
,
467
(
2010
).
26.
G. Q.
Jian
,
S.
Chowdhury
,
K.
Sullivan
, and
M. R.
Zachariah
,
Combust. Flame
160
,
432
(
2013
).
27.
K. S.
Martirosyan
,
J. Mater. Chem.
21
,
9400
(
2011
).
28.
J. M.
Conny
,
Environ. Sci. Technol.
47
(15),
8575
(
2013
).
29.
F.
Altmann
and
R. J.
Young
,
J. Micro-Nanolithogr. MEMS MOEMS
13
,
011202
(
2014
).
30.
K.
Grandfield
and
H.
Engqvist
,
Adv. Mater. Sci. Eng.
2012
,
Article ID 841961
(
2012
).
32.
R. R.
Wixom
,
A. S.
Tappan
,
A. L.
Brundage
,
R.
Knepper
,
M. B.
Ritchey
,
J. R.
Michael
, and
M. J.
Rye
,
J. Mater. Res.
25
,
1362
(
2010
).
33.
C. E.
Shuck
,
M.
Frazee
,
A.
Gillman
,
M. T.
Beason
,
I. E.
Gunduz
,
K.
Matous
,
R.
Winarski
, and
A. S.
Mukasyan
,
J. Synchrotron Radiat.
23
,
990
(
2016
).
34.
H. W.
Qiu
,
V.
Stepanov
,
T. M.
Chou
,
A.
Surapaneni
,
A. R.
Di Stasio
, and
W. Y.
Lee
,
Powder Technol.
226
,
235
(
2012
).
35.
B.
Rufino
,
F.
Boulc'h
,
M. V.
Coulet
,
G.
Lacroix
, and
R.
Denoyel
,
Acta Mater.
55
,
2815
(
2007
).
36.
K. R.
Overdeep
and
T. P.
Weihs
,
J. Therm. Anal. Calorim.
122
,
787
(
2015
).
37.
D.
Ng
and
G.
Fralick
,
Rev. Sci. Instrum.
72
,
1522
(
2001
).
38.
B. J.
McBride
and
S.
Gordon
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User's Manual and Program Description
,” (
1996
).
39.
J. J.
Granier
and
M. L.
Pantoya
,
Combust. Flame
138
,
373
(
2004
).
40.
J. A.
Puszynski
,
C. J.
Bulian
, and
J. J.
Swiatkiewicz
,
J. Propul. Power
23
,
698
(
2007
).
41.
P.
Chakraborty
and
M. R.
Zachariah
,
Combust. Flame
161
,
1408
(
2014
).
42.
G. C.
Egan
,
K. T.
Sullivan
,
T.
LaGrange
,
B. W.
Reed
, and
M. R.
Zachariah
,
J. Appl. Phys.
115
,
084903
(
2014
).
43.
R. J.
Jacob
,
B.
Wei
, and
M. R.
Zachariah
,
Combust. Flame
16
,
472
(
2016
).
44.
P.
Bucher
,
R. A.
Yetter
,
F. L.
Dryer
,
T. P.
Parr
, and
D. M.
Hanson-Parr
, in
Proceedings of the Twenty-Seventh Symposium (International) on Combustion
(
1998
), Vols. 1 and 2, p.
2421
.
45.
P.
Lynch
,
H.
Krier
, and
N.
Glumac
,
Combust. Flame
159
,
793
(
2012
).
46.
P.
Lynch
,
H.
Krier
, and
N.
Glumac
,
J. Thermophys. Heat Transfer
24
,
301
(
2010
).
47.
T. R.
Sippel
,
S. F.
Son
, and
L. J.
Groven
,
Combust. Flame
161
,
311
(
2014
).
48.
H.
Wang
,
G.
Jian
,
G. C.
Egan
, and
M. R.
Zachariah
,
Combust. Flame
161
,
2203
(
2014
).

Supplementary Material

You do not currently have access to this content.