A constitutive modelling of ferromagnetic materials under combined magnetomechanical multiaxial loading with different boundary conditions and a finite element implementation are presented. The phenomenologically motivated model is capable of predicting magnetisation, strain, and stress and is thus suitable, e.g., for applications in multiferroic composites. The approach covers a reversible nonlinear behaviour as it is observed, e.g., in cobalt ferrite and other soft magnetic alloys. Various examples demonstrate the suitability of the model and its numerical implementation and give an insight into the behaviour of soft magnets, exposed to different boundary conditions or being embedded into other compliant materials.

1.
Avakian
,
A.
,
Gellmann
,
R.
, and
Ricoeur
,
A.
, “
Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites
,”
Acta Mech.
226
(
8
),
2789
2806
(
2015
).
2.
Avakian
,
A.
and
Ricoeur
,
A.
, “
Constitutive modeling of nonlinear reversible and irreversible ferromagnetic behaviors and application to multiferroic composites
,”
J. Intell. Mater. Syst. Struct.
27
(18),
2536
2554
(
2016
).
3.
Bergmann
,
L.
and
Schaefer
,
C.
,
Lehrbuch der Experimentalphysik
(
de Gruyter
,
Berlin/New York
,
2005
), Vol.
6
.
4.
Bhame
,
S. D.
and
Joy
,
P. A.
, “
Tuning of the magnetostrictive properties of CoFe2O4 by Mn substitution for Co
,”
J. Appl. Phys.
100
(
11
),
113911
(
2006
).
5.
Bhame
,
S. D.
and
Joy
,
P. A.
, “
Magnetic and magnetostrictive properties of manganese substituted cobalt ferrite
,”
J. Phys. D: Appl. Phys.
40
(
11
),
3263
3267
(
2007
).
6.
Bhame
,
S. D.
and
Joy
,
P. A.
, “
Effect of sintering conditions and microstructure on the magnetostrictive properties of cobalt ferrite
,”
J. Am. Ceram. Soc.
91
(
6
),
1976
1980
(
2008
).
7.
Bibes
,
M.
and
Barthélémy
,
A.
, “
Multiferroics: Towards a magnetoelectric memory
,”
Nat. Mater.
7
(
6
),
425
426
(
2008
).
8.
Bozorth
,
R. M.
,
Ferromagnetism
(
Van Nostrand
,
New York
,
1951
).
9.
Buchanan
,
G. R.
, “
Layered versus multiphase magneto-electro-elastic composites
,”
Composites, Part B
35
(
5
),
413
420
(
2004
).
10.
Carman
,
G. P.
and
Mitrovic
,
M.
, “
Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems
,”
J. Intell. Mater. Syst. Struct.
6
(
5
),
673
683
(
1995
).
11.
Du Trémolet de Lacheisserie
,
E.
,
Gignoux
,
D.
, and
Schlenker
,
M.
,
Magnetism. Materials and Applications
(
Springer
,
New York
,
2005
).
12.
Eerenstein
,
W.
,
Wiora
,
M.
,
Prieto
,
J.
,
Scott
,
J. F.
, and
Mathur
,
N.
, “
Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures
,”
Nat. Mater.
6
(
5
),
348
351
(
2007
).
13.
Etier
,
M. F.
,
Shvartsman
,
V. V.
,
Stromberg
,
F.
,
Landers
,
J.
,
Wende
,
H.
, and
Lupascu
,
D. C.
, “
Synthesis and magnetic properties of cobalt ferrite nanoparticles
,” In
2011 MRS Fall Meeting & Exhibit (Symposium Q: Magnetoelectric Composites), Boston, USA, 28 November–2 December 2011
(
2012
), p.
1398
.
14.
Feltin
,
N.
and
Pileni
,
M. P.
, “
New technique for synthesizing iron ferrite magnetic nanosized particles
,”
Langmuir
13
(
15
),
3927
3933
(
1997
).
15.
Fiebig
,
M.
, “
Revival of the magnetoelectric effect
,”
J. Phys. D: Appl. Phys.
38
(
8
),
R123
R152
(
2005
).
16.
Jackson
,
J. D.
,
Classical Electrodynamics
(
John Wiley & Sons
,
New York
,
1998
).
40.
Hill
,
N.
, “Why are there so few magnetic ferroelectrics?”
Journal of Physical Chemistry B
104
(29),
6694
6709
(2000).
17.
Kallenbach
,
E.
,
Eick
,
R.
,
Quendt
,
P.
,
Ströhla
,
T.
,
Feindt
,
K.
,
Kallenbach
,
M.
, and
Radler
,
O.
,
Elektromagnete. Grundlagen, Berechnung, Entwurf und Anwendung
(
Vieweg+Teubner
,
Wiesbaden
,
2012
).
18.
Kiefer
,
B.
and
Lagoudas
,
D. C.
, “
Phenomenological modeling of ferromagnetic shape memory alloys
,”
Proc. SPIE
5387
,
164
176
(
2004
).
19.
Kittel
,
C.
,
Einführung in die Festkörperphysik
(
Oldenbourg
,
München
,
2006
), Vol.
14
.
20.
Li
,
J. Y.
and
Dunn
,
M. L.
, “
Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behavior
,”
J. Intell. Mater. Syst. Struct.
9
(
6
),
404
416
(
1998
).
21.
Linnemann
,
K.
,
Klinkel
,
S.
, and
Wagner
,
W.
, “
A constitutive model for magnetostrictive and piezoelectric materials
,”
Int. J. Solids Struct.
46
,
1149
1166
(
2009
).
22.
Lu
,
A. H.
,
Salabas
,
E. L.
, and
Schüth
,
F.
, “
Magnetic nanoparticles: synthesis, protection, functionalization, and application
,”
Angew. Chem.
46
(
8
),
1222
1244
(
2007
).
23.
Lu
,
X. Y.
,
Li
,
H.
, and
Wang
,
B.
, “
Theoretical analysis of electric, magnetic and magnetoelectric properties of nano-structured multiferroic composites
,”
J. Mech. Phys. Solids
59
(
10
),
1966
1977
(
2011
).
24.
Miehe
,
C.
,
Kiefer
,
B.
, and
Rosato
,
D.
, “
An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level
,”
Int. J. Solids Struct.
48
(
13
),
1846
1866
(
2011a
).
25.
Miehe
,
C.
,
Rosato
,
D.
, and
Kiefer
,
B.
, “
Variational principles in dissipative electro-magneto-mechanics: A framework for the macro-modeling of functional materials
,”
Int. J. Numer. Methods Eng.
86
(
10
),
1225
1276
(
2011b
).
26.
Mohaideen
,
K. K.
and
Joy
,
P. A.
, “
Studies on the effect of sintering conditions on the magnetostriction characteristics of cobalt ferrite derived from nanocrystalline powders
,”
J. Eur. Ceram. Soc.
34
(
3
),
677
686
(
2014
).
27.
Morrish
,
A. H.
,
The Physical Principles of Magnetism
(
IEEE Press
,
New York
,
2001
).
28.
Nan
,
C. W.
, “
Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases
,”
Phys. Rev. B
50
(
9
),
6082
6088
(
1994
).
29.
Nan
,
C. W.
,
Bichurin
,
M. I.
,
Dong
,
S. X.
,
Viehland
,
D.
, and
Srinivasan
,
G.
, “
Multiferroic magnetoelectric composites: Historical perspective, status, and future directions
,”
J. Appl. Phys.
103
(
3
),
031101
(
2008
).
30.
Scott
,
J. F.
, “
Data storage: Multiferroic memories
,”
Nat. Mater.
6
(
4
),
256
257
(
2007
).
31.
Shi
,
P.
,
Jin
,
K.
, and
Zheng
,
X.
, “
A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field
,”
J. Appl. Phys.
119
,
145103
(
2016
).
32.
Stefanita
,
C. G.
,
Magnetism. Basics and Applications
(
Springer
,
Heidelberg/New York
,
2012
).
33.
Tang
,
T.
and
Yu
,
W.
, “
Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method
,”
Smart Mater. Struct.
18
(
12
),
125026
(
2009
).
34.
Vanderlinde
,
J.
,
Classical Electromagnetic Theory
(
Springer
,
Dordrecht, Netherlands
,
2005
).
35.
Wan
,
Y.
,
Fang
,
D.
, and
Hwang
,
K. C.
, “
Nonlinear constitutive relations for magnetostrictive materials
,”
Int. J. Nonlinear Mech.
38
(
7
),
1053
1065
(
2003
).
36.
Wan
,
Y. P.
and
Zhong
,
Z.
, “
Vibration analysis of Tb–Dy–Fe magnetostriction actuator and transducer
,”
Int. J. Mech. Mater. Des.
1
,
95
107
(
2004
).
37.
Wang
,
D.
,
Wang
,
L.
, and
Melnik
,
R.
, “
A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence
,”
J. Magn. Magn. Mater.
410
,
144
149
(
2016
).
38.
Xu
,
H.
,
Pei
,
Y.
,
Fang
,
D.
, and
Ai
,
S.
, “
An energy-based dynamic loss hysteresis model for giant magnetostrictive materials
,”
Int. J. Solids Struct.
50
(
5
),
672
679
(
2013
).
39.
Zheng
,
X. J.
and
Liu
,
X. E.
, “
A nonlinear constitutive model for Terfenol-D rods
,”
J. Appl. Phys.
97
,
053901
(
2005
).
You do not currently have access to this content.