To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) - a body-centered cubic metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ∼0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within the experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ∼3.6 GPa. Numerical simulations of the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}⟨111⟩ and/or {112}⟨111⟩ slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. The numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.

1.
T. J.
Ahrens
, in
High Pressure Shock Compression of Solids
, edited by
J. R.
Asay
and
M.
Shahinpoor
(
Springer-Verlag
,
NY
,
1993
), p.
75
.
2.
J.
Buchar
,
S.
Rolc
,
J.
Pecháček
, and
J.
Krejčí
,
J. Phys. IV France
01
,
C3
197
(
1991
).
3.
G. I.
Kanel
,
S. V.
Razorenov
, and
V. E.
Fortov
,
Shock-Wave Phenomena and the Properties of Condensed Matter
(
Springer
,
New York
,
2004
).
4.
J. N.
Johnson
,
O. E.
Jones
, and
T. E.
Michaels
,
J. Appl. Phys.
41
,
2330
(
1970
).
5.
O. E.
Jones
and
J. D.
Mote
,
J. Appl. Phys.
40
,
4920
(
1969
).
6.
W. J.
Murri
and
G. D.
Anderson
,
J. Appl. Phys.
41
,
3521
(
1970
).
7.
J. R.
Asay
,
G. R.
Fowles
, and
Y. M.
Gupta
,
J. Appl. Phys.
43
,
744
(
1972
).
8.
J. R.
Asay
,
G. R.
Fowles
,
G. E.
Duvall
,
M. H.
Miles
, and
R. F.
Tinder
,
J. Appl. Phys.
43
,
2132
(
1972
).
9.
Y. M.
Gupta
,
G. E.
Duvall
, and
G. R.
Fowles
,
J. Appl. Phys.
46
,
532
(
1975
).
10.
L. E.
Pope
and
J. N.
Johnson
,
J. Appl. Phys.
46
,
720
(
1975
).
11.
Y. M.
Gupta
,
J. Appl. Phys.
48
,
5067
(
1977
).
12.
G.
Rosenberg
and
G. E.
Duvall
,
J. Appl. Phys.
51
,
319
(
1980
).
13.
N.
Kidron
, Ph.D. thesis,
Washington State University
, Pullman,
1983
.
14.
J. M.
Winey
and
Y. M.
Gupta
,
J. Appl. Phys.
99
,
023510
(
2006
).
15.
J. M.
Winey
and
Y. M.
Gupta
,
J. Appl. Phys.
116
,
033505
(
2014
).
16.
J. M.
Winey
,
P.
Renganathan
, and
Y. M.
Gupta
,
J. Appl. Phys.
117
,
105903
(
2015
).
17.
T. E.
Michaels
, Ph.D. thesis,
Washington State University
, Pullman,
1972
.
18.
G. I.
Kanel
,
S. V.
Razorenov
,
A. V.
Utkin
,
V. E.
Fortov
,
K.
Baumung
,
H. U.
Karow
,
D.
Rusch
, and
V.
Licht
,
J. Appl. Phys.
74
,
7162
(
1993
).
19.
G.
Whiteman
,
S.
Case
, and
J. F.
Millett
,
J. Phys.: Conf. Ser.
500
,
112067
(
2014
).
20.
N. K.
Chen
and
R.
Maddin
,
AIME Trans.
191
,
937
(
1951
).
21.
P. J.
Sherwood
,
F.
Guiu
,
H. C.
Kim
, and
P. L.
Pratt
,
Can. J. Phys.
45
,
1075
(
1967
).
22.
S. S.
Lau
and
J. E.
Dorn
,
Phys. Status Solidi A
2
,
825
(
1970
).
23.
G. J.
Irwin
,
F.
Guiu
, and
P. L.
Pratt
,
Phys. Status Solidi A
22
,
685
(
1974
).
24.
L.
Hollang
,
D.
Brunner
, and
A.
Seeger
,
Mater. Sci. Eng. A
319–321
,
233
(
2001
).
25.
C. R.
Weinberger
,
B. L.
Boyce
, and
C. C.
Battaile
,
Int. Mater. Rev.
58
,
296
(
2013
).
26.
G. R.
Fowles
,
G. E.
Duvall
,
J.
Asay
,
P.
Bellamy
,
F.
Feistmann
,
D.
Grady
,
T.
Michaels
, and
R.
Mitchell
,
Rev. Sci. Instrum.
41
,
984
(
1970
).
27.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
28.
D. H.
Dolan
,
Sandia National Laboratories Report No. SAND2006-1950
,
2006
.
29.
S. C.
Jones
,
M. C.
Robinson
, and
Y. M.
Gupta
,
J. Appl. Phys.
93
,
1023
(
2003
).
30.
R. G.
McQueen
,
S. P.
Marsh
,
J. W.
Taylor
,
J. N.
Fritz
, and
W. J.
Carter
, in
High-Velocity Impact Phenomena
, edited by
R.
Kinslow
(
Academic
,
New York
,
1970
), p.
293
.
31.
R. N.
Thurston
, in
Physical Acoustics
, edited by
W. P.
Mason
(
Academic
,
New York
,
1964
), Vol.
1A
, p.
1
.
32.
D. L.
Davidson
and
F. R.
Brotzen
,
J. Appl. Phys.
39
,
5768
(
1968
).
33.
F. F.
Voronov
,
V. M.
Prokhorov
,
Ye. L.
Gromnitskaya
, and
G. G.
Il'yina
,
Fiz. Met. Metalloved.
45
,
1263
(
1978
)
F. F.
Voronov
,
V. M.
Prokhorov
,
Ye. L.
Gromnitskaya
, and
G. G.
Il'yina
[
Phys. Met. Metallogr. (USSR)
45
,
123
(
1978
)].
34.
J. E.
Edwards
,
R.
Speiser
, and
H. L.
Johnston
,
J. Appl. Phys.
22
,
424
(
1951
).
35.
M. E.
Wieser
,
N.
Holden
,
T. B.
Coplen
,
J. K.
Böhlke
,
M.
Berglund
,
W. A.
Brand
,
P.
De Bièvre
,
M.
Gröning
,
R. D.
Loss
,
J.
Meija
,
T.
Hirata
,
T.
Prohaska
,
R.
Schoenberg
,
G.
O'Connor
,
T.
Walczyk
,
S.
Yoneda
, and
X.
Zhu
,
Pure Appl. Chem.
85
,
1047
(
2013
).
36.
R. S.
Hixon
and
J. N.
Fritz
,
J. Appl. Phys.
71
,
1721
(
1992
).
37.
J. J.
Gilman
,
Micromechanics of Flow in Solids
(
McGraw-Hill
,
New York
,
1969
).
38.
S. C.
Jones
,
B. A. M.
Vaughan
, and
Y. M.
Gupta
,
J. Appl. Phys.
90
,
4990
(
2001
).
39.
Y. M.
Gupta
,
COPS Wave Propagation Code
(
SRI International
,
Menlo Park, CA
,
1976
).
40.
M. L.
Wilkins
, in
Methods in Computational Physics
, edited by
B.
Alder
,
S.
Fernbach
, and
M.
Rotenberg
(
Academic
,
New York
,
1964
), Vol.
3
, p.
211
.
41.
Y. M.
Gupta
,
Polym. Eng. Sci.
24
,
851
(
1984
).
42.
J. R.
Asay
,
D. L.
Hicks
, and
D. B.
Holdridge
,
J. Appl. Phys.
46
,
4316
(
1975
).
43.
Y. M.
Gupta
,
J. M.
Winey
,
P. B.
Trivedi
,
B. M.
Lalone
,
R. F.
Smith
,
J. H.
Eggert
, and
G. W.
Collins
,
J. Appl. Phys.
105
,
036107
(
2009
).
44.
F.
Guiu
,
Scr. Metall.
3
,
449
(
1969
).
45.
W.
Xu
and
J. A.
Moriarty
,
Phys. Rev. B
54
,
6941
(
1996
).
46.
W.
Luo
,
D.
Roundy
,
M. L.
Cohen
, and
J. W.
Morris
,
Phys. Rev. B
66
,
094110
(
2002
).
47.
S.
Ogata
,
J.
Li
,
N.
Hirosaki
,
Y.
Shibutani
, and
S.
Yip
,
Phys. Rev. B
70
,
104104
(
2004
).
48.
L. H.
Tang
,
M.
Tang
, and
J. A.
Moriarty
, in
Dislocation in Solids
, edited by
J. P.
Hirth
and
L.
Kubin
(
North-Holland
,
Amsterdam
,
2010
), Vol.
16
, p.
1
.
49.
H.
Park
,
M. R.
Fellinger
,
T. J.
Lenosky
,
W. W.
Tipton
,
D. R.
Trinkle
,
S. P.
Rudin
,
C.
Woodward
,
J. W.
Wilkins
, and
R. G.
Hennig
,
Phys. Rev. B
85
,
214121
(
2012
).
You do not currently have access to this content.