Surface acoustic waves are used in magnetism to initiate magnetization switching, in microfluidics to control fluids and particles in lab-on-a-chip devices, and in quantum systems like two-dimensional electron gases, quantum dots, photonic cavities, and single carrier transport systems. For all these applications, an easy tool is highly needed to measure precisely the acoustic wave amplitude in order to understand the underlying physics and/or to optimize the device used to generate the acoustic waves. We present here a method to determine experimentally the amplitude of surface acoustic waves propagating on Gallium Arsenide generated by an interdigitated transducer. It relies on Vector Network Analyzer measurements of S parameters and modeling using the Coupling-Of-Modes theory. The displacements obtained are in excellent agreement with those measured by a very different method based on X-ray diffraction measurements.

1.
C.
Ruppel
,
L.
Reindl
, and
R.
Weigel
,
IEEE Microwave Mag.
3
,
65
(
2002
).
2.
A.
Pohl
,
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
47
,
317
(
2000
).
3.
T. M.
Gronewold
,
Anal. Chim. Acta
603
,
119
(
2007
).
4.
K.
Länge
,
B. E.
Rapp
, and
M.
Rapp
,
Anal. Bioanal. Chem.
391
,
1509
(
2008
).
5.
J.
Lee
,
Y.-S.
Choi
,
Y.
Lee
,
H. J.
Lee
,
J. N.
Lee
,
S. K.
Kim
,
K. Y.
Han
,
E. C.
Cho
,
J. C.
Park
, and
S. S.
Lee
,
Anal. Chem.
83
,
8629
(
2011
).
6.
L.
Thevenard
,
J.-Y.
Duquesne
,
E.
Peronne
,
H. J.
von Bardeleben
,
H.
Jaffres
,
S.
Ruttala
,
J.-M.
George
,
A.
Lemaître
, and
C.
Gourdon
,
Phys. Rev. B
87
,
144402
(
2013
).
7.
L.
Thevenard
,
I. S.
Camara
,
S.
Majrab
,
M.
Bernard
,
P.
Rovillain
,
A.
Lemaître
,
C.
Gourdon
, and
J.-Y.
Duquesne
,
Phys. Rev. B
93
,
134430
(
2016
).
8.
W.
Li
,
B.
Buford
,
A.
Jander
, and
P.
Dhagat
,
IEEE Trans. Magn.
50
,
37
(
2014
).
9.
W.
Li
,
B.
Buford
,
A.
Jander
, and
P.
Dhagat
,
J. Appl. Phys.
115
,
17E307
(
2014
).
10.
L.
Thevenard
,
I. S.
Camara
,
J.-Y.
Prieur
,
P.
Rovillain
,
A.
Lemaître
,
C.
Gourdon
, and
J.-Y.
Duquesne
,
Phys. Rev. B
93
,
140405
(
2016
).
11.
J.
Dean
,
M. T.
Bryan
,
J. D.
Cooper
,
A.
Virbule
,
J. E.
Cunningham
, and
T. J.
Hayward
,
Appl. Phys. Lett.
107
,
142405
(
2015
).
12.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
,
Science
320
,
190
(
2008
).
13.
T.
Frommelt
,
M.
Kostur
,
M.
Wenzel-Schäfer
,
P.
Talkner
,
P.
Hänggi
, and
A.
Wixforth
,
Phys. Rev. Lett.
100
,
034502
(
2008
).
14.
W.-K.
Tseng
,
J.-L.
Lin
,
W.-C.
Sung
,
S.-H.
Chen
, and
G.-B.
Lee
,
J. Micromech. Microeng.
16
,
539
(
2006
).
15.
T.-D.
Luong
,
V.-N.
Phan
, and
N.-T.
Nguyen
,
Microfluid. Nanofluid.
10
,
619
(
2011
).
16.
A.
Wixforth
,
C.
Strobl
,
C.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z. V.
Guttenberg
,
Anal. Bioanal. Chem.
379
,
982
(
2004
).
17.
A.
Renaudin
,
P.
Tabourier
,
V.
Zhang
,
J.
Camart
, and
C.
Druon
,
Sens. Actuators, B
113
,
389
(
2006
).
18.
T. A.
Franke
and
A.
Wixforth
,
ChemPhysChem
9
,
2140
(
2008
).
19.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
,
Phys. Rev. Lett.
103
,
024501
(
2009
).
20.
M.
Kurosawa
,
T.
Watanabe
,
A.
Futami
, and
T.
Higuchi
,
Sens. Actuators, A
50
,
69
(
1995
).
21.
S. B. Q.
Tran
,
P.
Marmottant
, and
P.
Thibault
,
Appl. Phys. Lett.
101
,
114103
(
2012
).
22.
J.
Shi
,
X.
Mao
,
D.
Ahmed
,
A.
Colletti
, and
T. J.
Huang
,
Lab Chip
8
,
221
(
2008
).
23.
J.
Shi
,
H.
Huang
,
Z.
Stratton
,
Y.
Huang
, and
T. J.
Huang
,
Lab Chip
9
,
3354
(
2009
).
24.
J.
Nam
,
Y.
Lee
, and
S.
Shin
,
Microfluid. Nanofluid.
11
,
317
(
2011
).
25.
T.
Franke
,
A. R.
Abate
,
D. A.
Weitz
, and
A.
Wixforth
,
Lab Chip
9
,
2625
(
2009
).
26.
T.
Franke
,
S.
Braunmüller
,
L.
Schmid
,
A.
Wixforth
, and
D. A.
Weitz
,
Lab Chip
10
,
789
(
2010
).
27.
R.
Shilton
,
M. K.
Tan
,
L. Y.
Yeo
, and
J. R.
Friend
,
J. Appl. Phys.
104
,
014910
(
2008
).
28.
H.
Li
,
J. R.
Friend
, and
L. Y.
Yeo
,
Biomed. Microdevices
9
,
647
(
2007
).
29.
P. R.
Rogers
,
J. R.
Friend
, and
L. Y.
Yeo
,
Lab Chip
10
,
2979
(
2010
).
30.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
,
Lab Chip
7
,
618
(
2007
).
31.
C. J.
Strobl
,
C.
Schaflein
,
U.
Beierlein
,
J.
Ebbecke
, and
A.
Wixforth
,
Appl. Phys. Lett.
85
,
1427
(
2004
).
32.
M.
Metcalfe
,
S. M.
Carr
,
A.
Muller
,
G. S.
Solomon
, and
J.
Lawall
,
Phys. Rev. Lett.
105
,
037401
(
2010
).
33.
M.
Weiß
,
J. B.
Kinzel
,
F. J. R.
Schülein
,
M.
Heigl
,
D.
Rudolph
,
S.
Morkötter
,
M.
Döblinger
,
M.
Bichler
,
G.
Abstreiter
,
J. J.
Finley
,
G.
Koblmüller
,
A.
Wixforth
, and
H. J.
Krenner
,
Nano Lett.
14
,
2256
(
2014
).
34.
F. J. R.
Schülein
,
E.
Zallo
,
P.
Atkinson
,
O. G.
Schmidt
,
R.
Trotta
,
A.
Rastelli
,
A.
Wixforth
, and
H. J.
Krenner
,
Nat. Nanotechnol.
10
,
512
(
2015
).
35.
S.
Lazić
,
E.
Chernysheva
,
Ž.
Gačević
,
H. P.
van der Meulen
,
E.
Calleja
, and
J. M.
Calleja Pardo
,
AIP Adv.
5
,
097217
(
2015
).
36.
M. M.
de Lima
,
M.
van der Poel
,
P. V.
Santos
, and
J. M.
Hvam
,
Phys. Rev. Lett.
97
,
045501
(
2006
).
37.
D. A.
Fuhrmann
,
S. M.
Thon
,
H.
Kim
,
D.
Bouwmeester
,
P. M.
Petroff
,
A.
Wixforth
, and
H. J.
Krenner
,
Nat. Photonics
5
,
605
(
2011
).
38.
H.
Li
,
S. A.
Tadesse
,
Q.
Liu
, and
M.
Li
,
Optica
2
,
826
(
2015
).
39.
P. V.
Santos
,
F.
Alsina
,
J. A. H.
Stotz
,
R.
Hey
,
S.
Eshlaghi
, and
A. D.
Wieck
,
Phys. Rev. B
69
,
155318
(
2004
).
40.
A.
García-Cristóbal
,
A.
Cantarero
,
F.
Alsina
, and
P. V.
Santos
,
Phys. Rev. B
69
,
205301
(
2004
).
41.
J. B.
Kinzel
,
F. J. R.
Schülein
,
M.
Weiß
,
L.
Janker
,
D. D.
Bühler
,
M.
Heigl
,
D.
Rudolph
,
S.
Morkötter
,
M.
Döblinger
,
M.
Bichler
,
G.
Abstreiter
,
J. J.
Finley
,
A.
Wixforth
,
G.
Koblmüller
, and
H. J.
Krenner
,
ACS Nano
10
,
4942
(
2016
).
42.
S. H.
Simon
,
Phys. Rev. B
54
,
13878
(
1996
).
43.
L.
Song
,
H.
Yuan
,
C.
Zhang
,
L.
Li
,
C.
Lu
, and
J.
Gao
,
J. Appl. Phys.
106
,
104508
(
2009
).
44.
A. N.
Darinskii
,
M.
Weihnacht
, and
H.
Schmidt
,
Lab Chip
16
,
2701
(
2016
).
45.
L.
Johansson
,
J.
Enlund
,
S.
Johansson
,
I.
Katardjiev
, and
V.
Yantchev
,
Biomed. Microdevices
14
,
279
(
2012
).
46.
S.
Yankin
,
A.
Talbi
,
Y.
Du
,
J.-C.
Gerbedoen
,
V.
Preobrazhensky
,
P.
Pernod
, and
O.
Bou Matar
,
J. Appl. Phys.
115
,
244508
(
2014
).
47.
C.
Gwiy-Sang
and
P.
Duy-Thach
,
J. Korean Phys. Soc.
57
,
446
(
2010
).
48.
J.
Zhou
,
H. F.
Pang
,
L.
Garcia-Gancedo
,
E.
Iborra
,
M.
Clement
,
M.
De Miguel-Ramos
,
H.
Jin
,
J. K.
Luo
,
S.
Smith
,
S. R.
Dong
,
D. M.
Wang
, and
Y. Q.
Fu
,
Microfluid. Nanofluid.
18
,
537
(
2015
).
49.
S.
Ippolito
,
K.
Kalantar-Zadeh
,
D.
Powell
, and
W.
Wlodarski
, in
IEEE Symposium on Ultrasonics
(IEEE,
2003
), pp.
303
306
.
50.
D.
Royer
and
E.
Dieulesaint
, in
Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications
, Advanced Texts in Physics (
Springer
,
Berlin, Heidelberg
,
2010
).
51.
E.
Lean
and
C.
Powell
,
Proc. IEEE
58
,
1939
(
1970
).
52.
R.
Tucoulou
,
F.
de Bergevin
,
O.
Mathon
, and
D.
Roshchupkin
,
Phys. Rev. B
64
,
134108
(
2001
).
53.
R.
Tucoulou
,
R.
Pascal
,
M.
Brunel
,
O.
Mathon
,
D. V.
Roshchupkin
,
I. a.
Schelokov
,
E.
Cattan
, and
D.
Remiens
,
J. Appl. Crystallogr.
33
,
1019
(
2000
).
54.
W.
Sauer
,
M.
Streibl
,
T. H.
Metzger
,
a. G. C.
Haubrich
,
S.
Manus
,
A.
Wixforth
,
J.
Peisl
,
A.
Mazuelas
,
J.
Hartwig
, and
J.
Baruchel
,
Appl. Phys. Lett.
75
,
1709
(
1999
).
55.
L.
Largeau
,
I.
Camara
,
J.-Y.
Duquesne
,
C.
Gourdon
,
P.
Rovillain
,
L.
Thevenard
, and
B.
Croset
,
J. Appl. Crystallogr.
49
,
2073
(
2016
).
56.
J.-D.
Nicolas
,
T.
Reusch
,
M.
Osterhoff
,
M.
Sprung
,
F. J. R.
Schülein
,
H. J.
Krenner
,
A.
Wixforth
, and
T.
Salditt
,
J. Appl. Crystallogr.
47
,
1596
(
2014
).
57.
M.
Pernpeintner
, “
Magnon-phonon coupling in ferromagnetic thin films
,” Ph.D. thesis (
Technische Universität München
,
2012
).
58.
M.
Weiler
,
H.
Huebl
,
F. S.
Goerg
,
F. D.
Czeschka
,
R.
Gross
, and
S. T. B.
Goennenwein
,
Phys. Rev. Lett.
108
,
176601
(
2012
).
59.
F. E.
Terman
,
Radio Engineer's Handbook
(
McGraw-Hill Book Company, Inc.
,
1943
).
60.
R. I.
Cottam
and
G. A.
Saunders
,
J. Phys. C: Solid State Phys.
6
,
2105
(
1973
).
61.
L.
Thevenard
,
C.
Gourdon
,
J. Y.
Prieur
,
H. J.
von Bardeleben
,
S.
Vincent
,
L.
Becerra
,
L.
Largeau
, and
J.-Y.
Duquesne
,
Phys. Rev. B
90
,
094401
(
2014
).
62.
P.
Wright
, in
Proceedings of the 43rd Annual Symposium on Frequency Control
(
1989
), p.
596
.
63.
P. V.
Wright
, in
Proceedings of the IEEE Ultrasonics Symposium
(IEEE,
1989
), p.
141
.
64.
T.
Thorvaldsson
, in
Proceedings of the IEEE Ultrasonics Symposium
(IEEE,
1989
), pp.
91
96
.
65.
A.
Haddou
,
T.
Gryba
,
J. E.
Lefebvre
,
V.
Sadaune
,
V.
Zhang
, and
E.
Cattan
, in
Proceedings of the IEEE Ultrasonics Symposium
(
2000
), Vol.
1
, pp.
91
94
.
66.
V.
Plessky
and
J.
Kostela
,
Int. J. High Speed Electron. Syst.
10
,
867
(
2000
).
67.
T.-T.
Wu
,
S.-M.
Wang
,
Y.-Y.
Chen
,
T.-Y.
Wu
,
P.-Z.
Chang
,
L.-S.
Huang
,
C.-L.
Wang
,
C.-W.
Wu
, and
C.-K.
Lee
,
Jpn. J. Appl. Phys., Part 1
41
,
6610
(
2002
).
68.
For a metallization ratio of 0.5, the resistance of one finger electrode is 4ρAulf/heλ where lf is the length of the finger and he is the metal thickness. For N fingers connected to the same busbar (N shunt resistors) this gives an equivalent resistance of 4ρAulf/Nheλ and, therefore, an equivalent total resistance of 8ρAulf/Nheλ8ρAuW/Nheλ for our transducer.
69.
R. A.
Matula
,
J. Phys. Chem. Ref. Data
8
,
1147
(
1979
).
70.
K. S.
Champlin
,
Appl. Phys. Lett.
12
,
231
(
1968
).
71.
M.
Clement
,
L.
Vergara
,
J.
Sangrador
,
E.
Iborra
, and
A.
Sanz-Hervás
,
Ultrasonics
42
,
403
(
2004
).
72.
D.
Frickey
,
IEEE Trans. Microwave Theory Tech.
42
,
205
(
1994
).
73.
F.
Kubat
,
W.
Ruile
,
T.
Hesjedal
,
J.
Stotz
,
U.
Rösler
, and
L. M.
Reindl
,
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
51
,
1437
(
2004
).
74.
S.
Ramo
,
J. R.
Whinnery
, and
T.
Van Duzer
, in
Fields and Waves in Communication Electronics
, 3rd ed. (
Wiley
,
New York
,
1994
).
You do not currently have access to this content.