Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.

1.
T.
Göddenhenrich
,
S.
Müller
, and
C.
Heiden
, “
A lateral modulation technique for simultaneous friction and topography measurements with the atomic force microscope
,”
Rev. Sci. Instrum.
65
,
2870
2873
(
1994
).
2.
K.
Yamanaka
and
E.
Tomita
, “
Lateral force modulation atomic force microscope for selective imaging of friction forces
,”
Jpn. J. Appl. Phys., Part 1
34
,
2879
2882
(
1995
).
3.
A.
Spychalski-Merle
,
K.
Krischker
,
T.
Göddenhenrich
, and
C.
Heiden
, “
Friction contrast in resonant cantilever vibration mode
,”
Appl. Phys. Lett.
77
,
501
(
2000
).
4.
F.
Mertens
,
T.
Göddenhenrich
, and
A.
Schirmeisen
, “
Resonant cantilever response of static-to-sliding transitions in dynamic friction force microscopy
,”
Appl. Phys. Lett.
104
,
113105
(
2014
).
5.
C. M.
Mate
,
G. M.
Mcclelland
,
R.
Erlandsson
, and
S.
Chiang
, “
Atomic-scale friction of a tungsten tip on a graphite surface
,”
Phys. Rev. Lett.
59
,
1942
1946
(
1987
).
6.
D.
Dietzel
,
M.
Feldmann
,
H.
Fuchs
,
U. D.
Schwarz
, and
A.
Schirmeisen
, “
Transition from static to kinetic friction of metallic nanoparticles
,”
Appl. Phys. Lett.
95
,
053104
(
2009
).
7.
F.
Mertens
,
T.
Göddenhenrich
,
V.
Lushta
, and
A.
Schirmeisen
, “
Dynamic friction-force microscopy using fractional-resonance excitation: Image contrast of graphite surface defects
,”
Phys. Rev. B
91
,
235414
(
2015
).
8.
Handbook of Micro/Nanotribology
, edited by
B.
Bhushan
(
CRC Press LLC
,
1998
).
9.
D.
Dietzel
,
C.
Ritter
,
T.
Mönninghoff
,
H.
Fuchs
,
A.
Schirmeisen
, and
U. D.
Schwarz
, “
Frictional duality observed during nanoparticle sliding
,”
Phys. Rev. Lett.
101
,
125505
(
2008
).
10.
D.
Dietzel
,
T.
Mönninghoff
,
C.
Herding
,
M.
Feldmann
,
H.
Fuchs
,
B.
Stegemann
,
C.
Ritter
,
U. D.
Schwarz
, and
A.
Schirmeisen
, “
Frictional duality of metallic nanoparticles: Influence of particle morphology, orientation, and air exposure
,”
Phys. Rev. B
82
,
035401
(
2010
).
11.
D.
Dietzel
,
M.
Feldmann
,
U. D.
Schwarz
, and
A.
Schirmeisen
, “
Scaling laws of structural lubricity
,”
Phys. Rev. Lett.
111
,
235502
(
2013
).
12.
M.
Feldmann
,
D.
Dietzel
,
H.
Fuchs
, and
A.
Schirmeisen
, “
Influence of contact aging on nanoparticle friction kinetics
,”
Phys. Rev. Lett.
112
,
155503
(
2014
).
13.
M.
Feldmann
,
D.
Dietzel
,
A.
Tekiel
,
J.
Topple
,
P.
Grütter
, and
A.
Schirmeisen
, “
Universal aging mechanism for static and sliding friction of metallic nanoparticles
,”
Phys. Rev. Lett.
117
,
025502
(
2016
).
14.
B.
Bhushan
, “
Nanotribology and nanomechanics
,”
Wear
259
,
1507
1531
(
2005
).
15.
K.
Krischker
, “
Modulations-Reibungsmikroskopie in der Hebelarm-Biegeresonanz zur Charakterisierung von Oberflächeneigenschaften im UHV
,” Ph.D. thesis (
Justus-Liebig-Universität Giessen
,
2001
).
16.
A. U.
Kareem
and
S. D.
Solares
, “
Characterization of surface stiffness and probe sample dissipation using the band excitation method of atomic force microscopy: A numerical analysis
,”
Nanotechnology
23
,
015706
(
2012
).
17.
B.
Stegemann
,
C.
Ritter
,
B.
Kaiser
, and
K.
Rademann
, “
Crystallization of antimony nanoparticles: Pattern formation and fractal growth
,”
J. Phys. Chem. B
108
,
14292
14297
(
2004
).
18.
D.
Dietzel
,
T.
Mönninghoff
,
L.
Jansen
,
H.
Fuchs
,
C.
Ritter
,
U. D.
Schwarz
, and
A.
Schirmeisen
, “
Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques
,”
J. Appl. Phys.
102
,
084306
(
2007
).
19.
E.
Cihan
,
S.
Ipek
,
E.
Durgun
, and
M. Z.
Baykara
, “
Structural lubricity under ambient conditions
,”
Nat. Commun.
7
,
12055
(
2016
).
20.
M.
Hirano
, “
Superlubricity: A state of vanishing friction
,”
Wear
254
,
932
940
(
2003
).
21.
S.
Sundararajan
and
B.
Bhushan
, “
Topography-induced contributions to friction forces measured using an atomic force/friction force microscope
,”
J. Appl. Phys.
88
,
4825
4831
(
2000
).
22.
A. M.
Jakob
,
M.
Müller
,
B.
Rauschenbach
, and
S. G.
Mayr
, “
Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys
,”
New J. Phys.
14
,
033029
(
2012
).
23.
S.
Jesse
,
S. V.
Kalinin
,
R.
Proksch
,
A.
Baddorf
, and
B.
Rodriguez
, “
The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale
,”
Nanotechnology
18
,
435503
(
2007
).
You do not currently have access to this content.