Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.

1.
R.
Skomskii
,
J. Phys.: Condens. Matter
15
,
R841
(
2003
).
2.
S. D.
Bader
,
Rev. Mod. Phys.
78
,
1
(
2006
).
3.
N.
Eibagi
,
J. J.
Kan
,
F. E.
Spada
, and
E. E.
Fullerton
,
IEEE Magn. Lett.
3
,
4500204
(
2012
).
4.
A.
Imre
,
G.
Csaba
,
L.
Ji
,
A.
Orlov
,
G. H.
Bernstein
, and
W.
Porod
,
Science
311
,
205
(
2006
).
5.
A.
Haldar
,
D.
Kumar
, and
A. O.
Adeyeye
,
Nat. Nanotechnol.
11
,
437
(
2016
).
6.
V. E.
Demidov
,
S.
Urazhdin
,
A.
Zholud
,
A. V.
Sadovnikov
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
106
,
022403
(
2015
).
7.
S. K.
Kim
,
K. S.
Lee
, and
D. S.
Han
,
Appl. Phys. Lett.
95
,
082507
(
2009
).
8.
Y.
Au
,
M.
Dvornik
,
O.
Dmytriiev
, and
V. V.
Kruglyak
,
Appl. Phys. Lett.
100
,
172408
(
2012
).
9.
S.
Kaka
,
M. R.
Pufall
,
W. H.
Rippard
,
T. J.
Silva
,
S. E.
Russek
, and
J. A.
Katine
,
Nature
437
,
389
(
2005
).
10.
M.
Krawczyk
and
D.
Grundler
,
J. Phys.: Condens. Matter
26
,
123202
(
2014
).
11.
B.
Lenk
,
H.
Ulrichs
,
F.
Garbs
, and
M.
Münzenberg
,
Phys. Rep.
507
,
107
(
2011
).
12.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Phys.
11
,
453
(
2015
).
13.
A.
Barman
,
S.
Wang
,
J. D.
Maas
,
A. R.
Hawkins
,
S.
Kwon
,
A.
Liddle
,
J.
Bokor
, and
H.
Schmidt
,
Nano Lett.
6
,
2939
(
2006
).
14.
Z.
Liu
,
R. D.
Sydora
, and
M. R.
Freeman
,
Phys. Rev. B
77
,
174410
(
2008
).
15.
P. S.
Keatley
,
P.
Gangmei
,
M.
Dvornik
,
R. J.
Hicken
,
J.
Childress
, and
J. A.
Katine
,
Appl. Phys. Lett.
98
,
082506
(
2011
).
16.
S.
Jung
,
B.
Watkins
,
L.
DeLong
,
J. B.
Ketterson
, and
V.
Chandrasekhar
,
Phys. Rev. B
66
,
132401
(
2002
).
17.
G.
Gubbiotti
,
G.
Carlotti
,
T.
Okuno
,
M.
Grimsditch
,
L.
Giovannini
,
F.
Montoncello
, and
F.
Nizzoli
,
Phys. Rev. B
72
,
184419
(
2005
).
18.
V. V.
Kruglyak
,
A.
Barman
,
R. J.
Hicken
,
J. R.
Childress
, and
J. A.
Katine
,
J. Appl. Phys.
97
,
10A706
(
2005
).
19.
J. M.
Shaw
,
T. J.
Silva
,
M. L.
Schneider
, and
R. D.
McMichael
,
Phys. Rev. B
79
,
184404
(
2009
).
20.
V. V.
Kruglyak
,
P. S.
Keatley
,
A.
Neudert
,
R. J.
Hicken
,
J. R.
Childress
, and
J. A.
Katine
,
Phys. Rev. Lett.
104
,
027201
(
2010
).
21.
B.
Rana
,
D.
Kumar
,
S.
Barman
,
S.
Pal
,
Y.
Fukuma
,
Y.
Otani
, and
A.
Barman
,
ACS Nano
5
,
9559
(
2011
).
22.
B. K.
Mahato
,
B.
Rana
,
D.
Kumar
,
S.
Barman
,
S.
Sugimoto
,
Y.
Otani
, and
A.
Barman
,
Appl. Phys. Lett.
105
,
012406
(
2014
).
23.
S.
Saha
,
R.
Mandal
,
S.
Barman
,
D.
Kumar
,
B.
Rana
,
Y.
Fukuma
,
S.
Sugimoto
,
Y.
Otani
, and
A.
Barman
,
Adv. Funct. Mater.
23
,
2378
(
2013
).
24.
K.
Machida
,
T.
Tezuka
,
T.
Yamamoto
,
T.
Ishibashi
,
Y.
Morishita
,
A.
Koukitu
, and
K.
Sato
,
J. Magn. Magn. Mater.
290
,
779
(
2005
).
25.
B. K.
Mahato
,
B.
Rana
,
R.
Mandal
,
D.
Kumar
,
S.
Barman
,
Y.
Fukuma
,
Y.
Otani
, and
A.
Barman
,
Appl. Phys. Lett.
102
,
192402
(
2013
).
26.
K.
Nanayakkara
,
A. P.
Jacob
, and
A.
Kozhanov
,
J. Appl. Phys.
118
,
163904
(
2015
).
27.
B. K.
Mahato
,
S.
Choudhury
,
R.
Mandal
,
S.
Barman
,
Y.
Otani
, and
A.
Barman
,
J. Appl. Phys.
117
,
213909
(
2015
).
28.
M.
Donahue
and
D. G.
Porter
,
OOMMF User's Guide, Version 1.0, NIST Interagency Report No. 6376
, National Institute of Standard and Technology, Gaithersburg, MD,
1999
.
29.
K. H. J.
Buschow
,
Handbook of Magnetic Materials
(
North Holland
,
Amsterdam, The Netherlands
,
2009
).
30.
D.
Kumar
,
O.
Dmytriiev
,
S.
Ponraj
, and
A.
Barman
,
J. Phys. D: Appl. Phys.
45
,
015001
(
2012
).
31.
F.
Montoncello
,
L.
Giovannini
,
F.
Nizzoli
,
P.
Vavassori
,
M.
Grimsditch
,
T.
Ono
,
G.
Gubbiotti
,
S.
Tacchi
, and
G.
Carlotti
,
Phys. Rev. B
76
,
024426
(
2007
).
32.
G. F.
Zhang
,
Z. X.
Li
,
X. G.
Wang
,
Y. Z.
Nie
, and
G. H.
Guo
,
J. Magn. Magn. Mater.
385
,
402
(
2015
).
33.
A. A.
Awad
,
K. Y.
Guslienko
,
J. F.
Sierra
,
G. N.
Kakazei
,
V.
Metlushko
, and
F. G.
Aliev
,
Appl. Phys. Lett.
96
,
012503
(
2010
).

Supplementary Material

You do not currently have access to this content.