Today's research on the cathodic arc deposition technique and coatings therefrom primarily focuses on the effects of, e.g., nitrogen partial pressure, growth temperature, and substrate bias. Detailed studies on the morphology and structure of the starting material—the cathode—during film growth and its influence on coating properties at different process conditions are rare. This work aims to study the evolution of the converted layer, its morphology, and microstructure, as a function of the cathode material grain size during deposition of Ti-Al-N coatings. The coatings were reactively grown in pure N2 discharges from powder metallurgically manufactured Ti-50 at.% Al cathodes with grain size distribution averages close to 1800, 100, 50, and 10 μm, respectively, and characterized with respect to microstructure, composition, and mechanical properties. The results indicate that for the cathode of 1800 μm grain size the disparity in the work function among parent phases plays a dominant role in the pronounced erosion of Al, which yields the coatings rich in macro-particles and of high Al content. We further observed that a reduction in the grain size of Ti-50 at.% Al cathodes to 10 μm provides favorable conditions for self-sustaining reactions between Ti and Al phases upon arcing to form γ phase. The combination of self-sustaining reaction and the arc process not only result in the formation of hole-like and sub-hole features on the converted layer but also generate coatings of high Al content and laden with macro-particles.

1.
A.
Anders
,
Cathodic Arcs
, 1st ed. (
Springer-Verlag
,
New York
,
2008
).
2.
L.
Rogström
,
J.
Ullbrand
,
J.
Almer
,
L.
Hultman
,
B.
Jansson
, and
M.
Odén
, “
Strain evolution during spinodal decomposition of TiAlN thin films
,”
Thin Solid Films
520
,
5542
5549
(
2012
).
3.
D.
Rafaja
,
A.
Poklad
,
V.
Klemm
,
G.
Schreiber
,
D.
Heger
,
M.
Šíma
 et al., “
Some consequences of the partial crystallographic coherence between nanocrystalline domains in Ti–Al–N and Ti–Al–Si–N coatings
,”
Thin Solid Films
514
,
240
249
(
2006
).
4.
A.
Knutsson
,
J.
Ullbrand
,
L.
Rogström
,
N.
Norrby
,
L. J. S.
Johnson
,
L.
Hultman
 et al., “
Microstructure evolution during the isostructural decomposition of TiAlN—A combined in-situ small angle x-ray scattering and phase field study
,”
J. Appl. Phys.
113
,
213518
(
2013
).
5.
L.
Rogström
,
L. J. S.
Johnson
,
M. P.
Johansson
,
M.
Ahlgren
,
L.
Hultman
, and
M.
Odén
, “
Age hardening in arc-evaporated ZrAlN thin films
,”
Scr. Mater.
62
,
739
741
(
2010
).
6.
L.
Hultman
,
J.
Bareño
,
A.
Flink
,
H.
Söderberg
,
K.
Larsson
,
V.
Petrova
 et al., “
Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations
,”
Phys. Rev. B
75
,
155437
(
2007
).
7.
M. P.
Johansson Jõesaar
,
N.
Norrby
,
J.
Ullbrand
,
R.
M'Saoubi
, and
M.
Odén
, “
Anisotropy effects on microstructure and properties in decomposed arc evaporated Ti1-xAlxN coatings during metal cutting
,”
Surf. Coat. Technol.
235
,
181
185
(
2013
).
8.
L.
Rogström
,
N.
Ghafoor
,
J.
Schroeder
,
N.
Schell
,
J.
Birch
,
M.
Ahlgren
 et al., “
Thermal stability of wurtzite Zr1−xAlxN coatings studied by in situ high-energy x-ray diffraction during annealing
,”
J. Appl. Phys.
118
,
035309
(
2015
).
9.
J. Q.
Zhu
,
A.
Eriksson
,
N.
Ghafoor
,
M. P.
Johansson
,
J.
Sjölén
,
L.
Hultman
 et al., “
Characterization of worn Ti–Si cathodes used for reactive cathodic arc evaporation
,”
J. Vac. Sci. Technol., A
28
,
347
353
(
2010
).
10.
A.
Anders
, “
Ion charge state distributions of vacuum arc plasmas: The origin of species
,”
Phys. Rev. E
55
,
969
981
(
1997
).
11.
J.
Zhu
,
B.
Syed
,
P.
Polcik
,
G.
Håkansson
,
M.
Johansson-Jöesaar
,
M.
Ahlgren
 et al., “
Effects of the cathode grain size and substrate fixture movement on the evolution of arc evaporated Cr-cathodes and Cr-N coating synthesis
,”
J. Vac. Sci. Technol., A
32
,
021515
(
2014
).
12.
I. C.
Schramm
,
M. P.
Johansson Jõesaar
,
J.
Jensen
,
F.
Mücklich
, and
M.
Odén
, “
Impact of nitrogen vacancies on the high temperature behavior of (Ti1−xAlx)Ny alloys
,”
Acta Mater.
119
,
218
228
(
2016
).
13.
M.
Odén
,
J.
Almer
, and
G.
Håkansson
, “
The effects of bias voltage and annealing on the microstructure and residual stress of arc-evaporated Cr–N coatings
,”
Surf. Coat. Technol.
120–121
,
272
276
(
1999
).
14.
H. J.
Kim
and
M. S.
Joun
, “
Effects of deposition temperature and time on the surface characteristics of TiN-coated high-speed steel by arc ion plating
,”
J. Mech. Sci. Technol.
21
,
575
584
(
2007
).
15.
P. D.
Swift
, “
Macroparticles in films deposited by steered cathodic arc
,”
J. Phys. D: Appl. Phys.
29
,
2025
(
1996
).
16.
M.
Birkholz
,
Thin Film Analysis by X-Ray Scattering
, 1st ed. (
Wiley-VCH Verlag GmbH & Co
.,
Germany
,
2006
).
17.
W. G.
Sloof
,
B. J.
Kooi
,
R.
Delhez
,
T. H.
de Keijser
, and
E. J.
Mittemeijer
, “
Diffraction analysis of nonuniform stresses in surface layers: Application to cracked TiN coatings chemically vapor deposited on Mo
,”
J. Mater. Res.
11
,
1440
1457
(
1996
).
18.
W. C.
Oliver
and
G. M.
Pharr
, “
An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments
,”
J. Mater. Res.
7
,
1564
1583
(
1992
).
19.
M.
Odén
,
J.
Almer
,
G.
Håkansson
, and
M.
Olsson
, “
Microstructure–property relationships in arc-evaporated Cr–N coatings
,”
Thin Solid Films
377–378
,
407
412
(
2000
).
20.
H. B.
Michaelson
, “
The work function of the elements and its periodicity
,”
J. Appl. Phys.
48
,
4729
4733
(
1977
).
21.
H.
Malamud
and
A. D.
Krumbein
, “
Measurement of the effect of chlorine treatment on the work function of titanium and zirconium
,”
J. Appl. Phys.
25
,
591
592
(
1954
).
22.
E. W. J.
Mitchell
and
J. W.
Mitchell
, “
The work functions of copper, silver and aluminium
,”
Proc. R. Soc. London, Ser. A Math. Phys. Sci.
210
,
70
84
(
1951
).
23.
M. P.
Marder
,
Condensed Matter Physics
, 2nd ed. (
John Wiley & Sons, Inc
.,
New Jersy, USA
,
2010
).
24.
A.
Anders
,
E. M.
Oks
,
G. Y.
Yushkov
,
K. P.
Savkin
,
I. G.
Brown
, and
A. G.
Nikolaev
, “
Measurements of the total ion flux from vacuum arc cathode spots
,”
IEEE Trans. Plasma Sci.
33
,
1532
1536
(
2005
).
25.
A.
Anders
and
G. Y.
Yushkov
, “
Angularly resolved measurements of ion energy of vacuum arc plasmas
,”
Appl. Phys. Lett.
80
,
2457
2459
(
2002
).
26.
J. E.
Daalder
, “
Components of cathode erosion in vacuum arcs
,”
J. Phys. D: Appl. Phys.
9
,
2379
(
1976
).
27.
J. E.
Hatch
,
Aluminum: Properties and Physical Metallurgy
, 10th ed. (
ASM International
,
USA
,
1984
).
28.
G. W a E W C R.
Boyer
,
Materials Properties Handbook: Titanium Alloys
(
ASM International
,
USA
,
1994
).
29.
V. I.
Kristya
, “
Analytical calculation of cathode spot parameters on the electrode surface in arc discharge
,”
J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.
3
,
289
291
(
2009
).
30.
S. A.
Barengolts
,
D. L.
Shmelev
, and
I. V.
Uimanov
, “
Pre-explosion phenomena beneath the plasma of a vacuum arc cathode spot
,”
IEEE Trans. Plasma Sci.
43
,
2236
2240
(
2015
).
31.
P. G.
Slade
,
The Vacuum Interrupter: Theory, Design, and Application
(
CRC Press
,
2007
).
32.
T.
Kubono
, “
A simplified analytical model for an anchored cathode root in a DC mercury vapour arc
,”
J. Phys. D: Appl. Phys.
17
,
1991
(
1984
).
33.
G.
Eckhardt
, “
Properties of anchored cathode spots of a dc mercury vacuum arc
,”
IEEE Trans. Plasma Sci.
8
,
295
301
(
1980
).
34.
A. W.
Hull
, “
A basic theory of the mercury cathode spot
,”
J. Appl. Phys.
35
,
490
496
(
1964
).
35.
L.
Tonks
, “
The force at an anchored cathode spot
,”
Phys. Rev.
50
,
226
233
(
1936
).
36.
U. R.
Kattner
,
J.-C.
Lin
, and
Y. A.
Chang
, “
Thermodynamic assessment and calculation of the Ti-Al system
,”
Metall. Trans. A
23
,
2081
2090
(
1992
).
37.
V. T.
Witusiewicz
,
A. A.
Bondar
,
U.
Hecht
,
S.
Rex
, and
T. Y.
Velikanova
, “
The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti
,”
J. Alloys Compd.
465
,
64
77
(
2008
).
38.
V. F.
Puchkarev
and
A. M.
Murzakayev
, “
Current density and the cathode spot lifetime in a vacuum arc at threshold currents
,”
J. Phys. D: Appl. Phys.
23
,
26
(
1990
).
39.
R.
Hackam
, “
Determination of the electric field enhancement factor and crater dimensions in aluminum from scanning electron micrographs
,”
J. Appl. Phys.
45
,
114
118
(
1974
).
40.
M.
Adeli
,
S. H.
Seyedein
,
M. R.
Aboutalebi
,
M.
Kobashi
, and
N.
Kanetake
, “
A study on the combustion synthesis of titanium aluminide in the self-propagating mode
,”
J. Alloys Compd.
497
,
100
104
(
2010
).
41.
Y.
Ma
,
Q.
Fan
,
J.
Zhang
,
J.
Shi
,
G.
Xiao
, and
M.
Gu
, “
Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system
,”
J. Wuhan Univ. Technol., Mater. Sci. Ed.
23
,
381
385
(
2008
).
42.
H.
Yan
,
F.
Ai
, and
X.
Chen
, “
Thermodynamics and kinetics of in-situ formation of TiAl3/7075 composites
,”
J. Wuhan Univ. Technol., Mater. Sci. Ed.
28
,
598
603
(
2013
).
43.
D. E.
Alman
, “
Reactive sintering of TiAl–Ti5Si3 in situ composites
,”
Intermetallics
13
,
572
579
(
2005
).
44.
R. W.
Rice
and
W. J.
McDonough
, “
Intrinsic volume changes of self-propagating synthesis
,”
J. Am. Ceram. Soc.
68
,
C-122
C-123
(
1985
).
45.
K. I.
Ibragimov
and
V. A.
Korol'kov
, “
Temperature dependence of the work function of metals and binary alloys
,”
Inorg. Mater.
37
,
567
572
(
2001
).
46.
R. L.
Boxman
and
S.
Goldsmith
, “
Macroparticle contamination in cathodic arc coatings: Generation, transport and control
,”
Surf. Coat. Technol.
52
,
39
50
(
1992
).
47.
R. R.
Zope
and
Y.
Mishin
, “
Interatomic potentials for atomistic simulations of the Ti-Al system
,”
Phys. Rev. B
68
,
024102
(
2003
).
You do not currently have access to this content.