Ferroelectrets, i.e., soft materials with electric charges deposited on the surfaces of internal voids, are well known for their potential in transducer applications and energy harvesting. Due to their regular geometry and optical transparency, tubular channel ferroelectrets (manufactured by laminating polymer films around a polytetrafluoroethylene template which is later removed) are well-suited for studying the process of charge deposition. Understanding how space charges are formed on the internal surfaces will lead to improvements in the charge density and in the piezoelectric performance of these films. In this work, the inception voltage for dielectric barrier discharges (and hence the onset of charge deposition) was measured using two independent techniques, fluorescence imaging and the laser intensity modulation method (LIMM). The results (around 1.4–1.7 kV, depending on the void height) are in agreement within ±50 V. The internal electric field distribution was calculated using finite element analysis (FEA). Combined with Paschen's law, these calculations explained the experimentally observed discharge patterns, starting from the channel edges in thick samples, but glowing more uniformly in films with void heights of 50 μm or less. A time-dependent FEA simulation of the LIMM measurement reproduced the observed thermoelastic resonances and their effect on the LIMM signal, and explained its seemingly erratic behavior. This approach has great potential for analyzing LIMM and thermal pulse data obtained in inhomogeneous materials.

1.
S.
Bauer
,
R.
Gerhard-Multhaupt
, and
G. M.
Sessler
,
Phys. Today
57
(
2
),
37
(
2004
).
2.
M.
Wegener
and
S.
Bauer
,
ChemPhysChem
6
,
1014
(
2005
).
3.
R.
Gerhard-Multhaupt
,
IEEE Trans. Dielectr. Electr. Insul.
9
,
850
(
2002
).
4.
M.
Lindner
,
S.
Bauer-Gogonea
,
S.
Bauer
,
M.
Paajanen
, and
J.
Raukola
,
J. Appl. Phys.
91
,
5283
(
2002
).
5.
G. S.
Neugschwandtner
,
R.
Schwödiauer
,
M.
Vieytes
,
S.
Bauer-Gogonea
,
S.
Bauer
,
J.
Hillenbrand
,
R.
Kressmann
,
G. M.
Sessler
,
M.
Paajanen
, and
J.
Lekkala
,
Appl. Phys. Lett.
77
,
3827
(
2000
).
6.
G. S.
Neugschwandtner
,
R.
Schwödiauer
,
S.
Bauer-Gogonea
,
S.
Bauer
,
M.
Paajanen
, and
J.
Lekkala
,
J. Appl. Phys.
89
,
4503
(
2001
).
7.
S. R.
Anton
and
K. M.
Farinholt
, “
An evaluation on low-level vibration energy harvesting using piezoelectret foam
,”
Proc. SPIE
8341
,
83410G
(
2012
).
8.
X.
Zhang
,
L.
Wu
, and
G. M.
Sessler
,
AIP Adv.
5
,
077185
(
2015
).
9.
G. M.
Sessler
,
P.
Pondrom
, and
X.
Zhang
,
Phase Trans.
89
,
667
(
2016
).
10.
H.
von Seggern
,
S.
Zhukov
, and
S. N.
Fedosov
,
IEEE Trans. Dielectr. Electr. Insul.
17
,
1056
(
2010
).
11.
X.
Zhang
,
J.
Hillenbrand
,
G. M.
Sessler
,
S.
Haberzettl
, and
K.
Lou
,
Appl. Phys. A: Mater. Sci. Proc.
107
,
621
(
2012
).
12.
D.
Rychkov
,
R. A. P.
Altafim
,
X.
Qiu
, and
R.
Gerhard
,
J. Appl. Phys.
111
,
124105
(
2012
).
13.
X.
Zhang
,
X.
Zhang
,
G. M.
Sessler
, and
X.
Gong
,
J. Phys. D: Appl. Phys.
47
,
015501
(
2014
).
14.
M.
Wegener
,
W.
Wirges
,
J.
Fohlmeister
,
B.
Tiersch
, and
R.
Gerhard-Multhaupt
,
J. Phys. D: Appl. Phys.
37
,
623
(
2004
).
15.
A.
Mellinger
,
M.
Wegener
,
W.
Wirges
, and
R.
Gerhard-Multhaupt
,
Appl. Phys. Lett.
79
,
1852
(
2001
).
16.
P.
Fang
,
M.
Wegener
,
W.
Wirges
, and
R.
Gerhard
,
Appl. Phys. Lett.
90
,
192908
(
2007
).
17.
M.
Sborikas
,
X.
Qiu
,
W.
Wirges
,
R.
Gerhard
,
W.
Jenninger
, and
D.
Lovera
,
Appl. Phys. A
114
,
515
(
2014
).
18.
R. A. P.
Altafim
,
X.
Qiu
,
W.
Wirges
,
R.
Gerhard
,
R. A. C.
Altafim
,
H. C.
Basso
,
W.
Jenninger
, and
J.
Wagner
,
J. Appl. Phys.
106
,
014106
(
2009
).
19.
X.
Qiu
,
W.
Wirges
, and
R.
Gerhard
,
Ferroelectrics
472
,
100
(
2014
).
20.
R. A. P.
Altafim
,
D.
Rychkov
,
W.
Wirges
,
R.
Gerhard
,
H. C.
Basso
,
R. A. C.
Altafim
, and
M.
Melzer
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
1116
(
2012
).
21.
U.
Kogelschatz
,
Plasma Chem. Plasma Proc.
23
,
1
(
2003
).
22.
X.
Qiu
,
A.
Mellinger
,
W.
Wirges
, and
R.
Gerhard
,
Appl. Phys. Lett.
91
,
132905
(
2007
).
23.
X.
Qiu
,
R.
Gerhard
, and
A.
Mellinger
,
IEEE Trans. Dielectr. Electr. Insul.
18
,
34
(
2011
).
24.
S.
Harris
and
A.
Mellinger
,
J. Appl. Phys.
115
,
163302
(
2014
).
25.
S.
Harris
and
A.
Mellinger
, “
Nitrogen and air Paschen curves for dielectric barrier discharges in μm-sized voids
,” in
Annual Report, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
IEEE Service Center, Piscataway, NJ
,
2015
)
, pp.
598
600
.
26.
A.
Mellinger
and
O.
Mellinger
,
IEEE Trans. Dielectr. Electr. Insul.
18
,
43
(
2011
).
27.
R. A. C.
Altafim
,
R. A. P.
Altafim
,
H. C.
Basso
,
X.
Qiu
,
W.
Wirges
,
R.
Gerhard
,
W.
Jenninger
, and
J.
Wagner
, “
Dielectric barrier discharges in multi-layer polymer ferroelectrets
,” in
Annual Report, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
2009
)
, pp.
307
310
.
28.
X.
Qiu
,
L.
Holländer
,
R.
Flores Suárez
,
W.
Wirges
, and
R.
Gerhard
,
Appl. Phys. Lett.
97
,
072905
(
2010
).
29.
S. B.
Lang
and
D. K.
Das-Gupta
,
J. Appl. Phys.
59
,
2151
(
1986
).
30.
A.
Imburgia
,
P.
Romano
,
M.
Caruso
,
F.
Viola
,
R.
Miceli
,
E. R.
Sanseverino
,
A.
Madonia
, and
G.
Schettino
,
Rev. Sci. Instrum.
87
,
111501
(
2016
).
31.
N.
Nepal
,
A.
Mellinger
, and
R. A. P.
Altafim
, “
Space charge build-up in tubular channel ferroelectrets
,” in
2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)
(
2016
), pp.
388
391
.
32.
A.
Mellinger
,
R.
Singh
, and
R.
Gerhard-Multhaupt
,
Rev. Sci. Instrum.
76
,
013903
(
2005
).
33.
B.
Ploss
,
R.
Emmerich
, and
S.
Bauer
,
J. Appl. Phys.
72
,
5363
(
1992
).
34.
X.
Qiu
,
A.
Mellinger
,
M.
Wegener
,
W.
Wirges
, and
R.
Gerhard
,
J. Appl. Phys.
101
,
104112
(
2007
).
35.
C.
Geuzaine
and
J.-F.
Remacle
,
Int. J. Numer. Methods Eng.
79
,
1309
(
2009
).
36.
See https://www.csc.fi/web/elmer for Elmer – finite element solver for multiphysical problems, CSC - IT Center for Science (CSC), Espoo, Finland.
37.
S. B.
Lang
,
IEEE Trans. Dielectr. Electr. Insul.
11
,
3
(
2004
).
38.
S.
Bauer
and
S.
Bauer-Gogonea
,
IEEE Trans. Dielectr. Electr. Insul.
10
,
883
(
2003
).
39.
A.
Mellinger
and
R.
Singh
, “
Polarization and space-charge profiling with laser-based thermal techniques
,” in
Nanomaterials: Processing and Characterization with Lasers
, edited by
S. C.
Singh
,
H. B.
Zeng
,
C.
Guo
, and
W. P.
Cai
(
Wiley-VCH
,
Weinheim, Germany
,
2012
), pp.
729
758
.
40.
A.
Mellinger
,
R.
Singh
,
M.
Wegener
,
W.
Wirges
,
R.
Gerhard-Multhaupt
, and
S. B.
Lang
,
Appl. Phys. Lett.
86
,
082903
(
2005
).
41.
S.
Aryal
and
A.
Mellinger
,
J. Appl. Phys.
114
,
154109
(
2013
).
42.
A.
Eydam
,
G.
Suchaneck
, and
G.
Gerlach
,
J. Sens. Sens. Syst.
5
,
165
(
2016
).
43.
J.
Song
,
H.
Lu
,
A.
Gruverman
, and
S.
Ducharme
,
Appl. Phys. Lett.
104
,
192901
(
2014
).
44.
E.
Tuncer
,
J. Phys. D: Appl. Phys.
38
,
497
503
(
2005
).
You do not currently have access to this content.