A novel sp2-sp3 hybridized orthorhombic BC2N (o-BC2N) structure (space group: Pmm2, No. 25) is investigated using first-principles calculations. O-BC2N is constructed from multi-layers of C sandwiched between two layers of BN along the c axis; this structure contains sp2- and sp3-hybridized B-C, C-C, and C-N bonds. The structural stability of o-BC2N is confirmed based on the calculation results for elastic constants and phonon dispersions. On the basis of the semi-empirical microscopic model, we speculate that the o-BC2N compound is a potential superhard material with a Vickers hardness of 41.2 GPa. Calculated results for electronic band structures, density of states (DOS) and partial DOS (PDOS) show that the o-BC2N crystal is metallic. The conducting electrons at the Fermi level are mostly from the 2p orbits of sp2-hybridized B4, N1, and Ci (i = 2, 3, 4, 6, 7, 8) atoms, with slight contribution from the sp3-hybridizd B2 atoms. Furthermore, the calculated electron orbits of the o-BC2N crystal demonstrate that the 2p orbits of the sp2-hybridized atoms overlapped and formed π bonds. The electrons can conduct through the π bonds along the orientation parallel to the [100] and [010] directions in different layers, and the basal planes were formed by B2-C3-C4 blocks, indicating that the o-BC2N possesses the fascinating electronic property of linear-planar metallicity.

1.
X. G.
Luo
and
J. L.
He
,
Chin. Phys. Lett.
29
(
3
),
036104
(
2012
).
2.
M.
Kawaguchi
,
S.
Kuroda
, and
Y.
Muramatsu
,
J. Phys. Chem. Solids
69
,
1171
(
2008
).
3.
J. L.
He
,
L. C.
Guo
,
E.
Wu
,
X. G.
Luo
, and
Y. J.
Tian
,
J. Phys. Condens. Matter
16
,
8131
(
2004
).
4.
X. G.
Luo
,
X. J.
Guo
,
Z. Y.
Liu
,
J. L.
He
,
D. L.
Yu
,
Y. J.
Tian
, and
H. T.
Wang
,
J. Appl. Phys.
101
,
83505
(
2007
).
5.
J.
Kouvetakis
,
T.
Sasaki
,
C.
Shen
,
R.
Hagiwara
,
M.
Lerner
,
K. M.
Krishnan
, and
N.
Bartlett
,
Synth. Met.
34
,
1
(
1989
).
6.
X. G.
Luo
,
Z. Y.
Liu
,
J. H.
He
,
B.
Xu
,
D. L.
Yu
,
H. T.
Wang
, and
Y. J.
Tian
,
J. Appl. Phys.
105
,
43509
(
2009
).
7.
M.
Kawaguchi
,
Y.
Wakukawa
, and
T.
Kawano
,
Synth. Met.
125
,
259
(
2001
).
8.
X. G.
Luo
,
X. F.
Zhou
,
Z. Y.
Liu
,
J. L.
He
,
B.
Xu
,
D.
Yu
,
H. T.
Wang
, and
Y. J.
Tian
,
J. Phys. Chem. C
112
,
9516
(
2008
).
9.
Q.
Li
,
M.
Wang
,
A. R.
Oganov
,
T.
Cui
,
Y. M.
Ma
, and
G. T.
Zou
,
J. Appl. Phys.
105
,
53514
(
2009
).
10.
X. G.
Luo
,
L. Y.
Li
,
W. H.
Wang
, and
Y. J.
Tian
,
J. Appl. Phys.
109
,
023516
(
2011
).
11.
V. L.
Solozhenko
,
High Presssure Res.
22
,
519
(
2002
).
12.
K.
Raidongia
,
K.
Hembram
,
U. V.
Waghmare
,
M.
Eswaramoorthy
, and
C. N. R.
Rao
,
Z. Anorg. Allg. Chem.
636
,
30
(
2010
).
13.
R. B.
Kaner
,
J.
Kouvetakis
,
C. E.
Warble
,
M. L.
Sattler
, and
N.
Bartlett
,
Mat. Res. Bull.
22
,
399
(
1987
).
14.
E.
Knittle
,
R. B.
Kaner
,
R.
Jeanloz
, and
M. L.
Cohen
,
Phys. Rev. B
51
,
12149
(
1995
).
15.
Y.
Zhao
,
D. W.
He
,
L. L.
Daemen
,
T. D.
Shen
,
R. B.
Schwarz
,
Y.
Zhu
,
D. L.
Bish
,
J.
Huang
,
J.
Zhang
,
G.
Shen
,
J.
Qian
, and
T. W.
Zerda
,
J. Mater. Res.
17
,
3139
(
2002
).
16.
V. L.
Solozhenkoa
,
D.
Andrault
,
G.
Fiquet
,
M.
Mezouar
, and
D. C.
Rubie
,
Appl. Phys. Lett.
78
,
1385
(
2001
).
17.
X. G.
Luo
,
X. J.
Guo
,
B.
Xu
,
Q. H.
Wu
,
Q. K.
Hu
,
Z. Y.
Liu
,
J. L.
He
,
D. L.
Yu
, and
Y. J.
Tian
,
Phys. Rev. B
76
,
094103
(
2007
).
18.
X. G.
Luo
,
X. J.
Guo
,
Z. Y.
Liu
,
J. L.
He
,
D. L.
Yu
,
B.
Xu
, and
Y. J.
Tian
,
Phys. Rev. B
76
,
092107
(
2007
).
19.
Y.
Tateyama
,
T.
Ogitsu
,
K.
Kusakabe
,
S.
Tsuneyuki
, and
S.
Itoh
,
Phys. Rev. B
55
,
R10161
(
1997
).
20.
M.
Mattesini
and
S. F.
Matar
,
Int. J. Inorg. Mater.
3
,
943
(
2001
).
21.
Y.
Zhang
,
H.
Sun
, and
C. F.
Chen
,
Phys. Rev. Lett.
93
,
195504
(
2004
).
22.
H.
Sun
,
S. H.
Jhi
,
D.
Roundy
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
64
,
094108
(
2001
).
23.
S. H.
Zhang
,
Q.
Wang
,
Y.
Kawazoe
, and
P.
Jena
,
J. Am. Chem. Soc.
135
,
18216
(
2013
).
24.
Z. S.
Zhao
,
B.
Xu
,
L. M.
Wang
,
X. F.
Zhou
,
J. L.
He
,
Z. Y.
Liu
,
H. T.
Wang
, and
Y. J.
Tian
,
ACS Nano
5
,
7226
(
2011
).
25.
Y. W.
Li
,
J.
Hao
,
H. Y.
Liu
,
S. Y.
Lu
, and
S. T.
John
,
Phys. Rev. Lett.
115
,
105502
(
2015
).
26.
M.
Segall
,
P. J.
Lindan
,
M. a.
Probert
,
C.
Pickard
,
P.
Hasnip
,
S.
Clark
, and
M.
Payne
,
J. Phys. Condens. Matter
14
,
2717
(
2002
).
27.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
30.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
31.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
32.
T. H.
Fischer
and
J.
Almlof
,
J. Phys. Chem.
96
,
9768
(
1992
).
33.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr. Cryst. Mater.
220
,
567
(
2005
).
34.
X. J.
Guo
,
L.
Li
,
Z. Y.
Liu
,
D. L.
Yu
,
J. L.
He
,
R. P.
Liu
,
B.
Xu
,
Y. J.
Tian
, and
H. T.
Wang
,
J. Appl. Phys.
104
,
023503
(
2008
).
35.
F. M.
Gao
,
J. L.
He
,
E. D.
Wu
,
S. M.
Liu
,
D. L.
Yu
,
D. C.
Li
,
S. Y.
Zhang
, and
Y. J.
Tian
,
Phys. Rev. Lett.
91
,
015502
(
2003
).
36.
J. L.
He
,
E. D.
Wu
,
H. T.
Wang
,
R. P.
Liu
, and
Y. J.
Tian
,
Phys. Rev. Lett.
94
,
015504
(
2005
).
37.
M. D.
Ma
,
B. C.
Yang
,
Z. H.
Li
,
M.
Hu
,
Q. Q.
Wang
,
L.
Cui
,
D. L.
Yu
, and
J. L.
He
,
Phys. Chem. Chem. Phys.
17
,
9748
(
2015
).
38.
J. P.
Watt
,
J. Appl. Phys.
50
,
6290
(
1979
).
You do not currently have access to this content.