Electrochemical strain microscopy (ESM) is based on the detection of the surface deformation of electrochemical materials induced by local electrical excitation via an AFM tip. Here, we compare the two common excitation methods, dual ac resonance tracking and band excitation, for resonance–amplified electrochemical strain microscopy. By means of these methods, we characterize two different materials, a mixed electronic-ionic conductor and a pure solid state ion conductor. We find a significant correlation between the resonance frequency and ESM drive amplitude. We performed numerical simulations taking into account the complex interplay of sample-tip interactions, contact mechanics, and cantilever dynamics. These simulations predict a positive amplitude-frequency correlation for pure Vegard strain and negative correlations for local tip/sample and non-local cantilever/sample electrostatic forces. These results are important for the quantitative interpretation of ESM-based images.

1.
U.
Rabe
,
S.
Amelio
,
E.
Kester
,
V.
Scherer
,
S.
Hirsekorn
, and
W.
Arnold
, “
Quantitative determination of contact stiffness using atomic force acoustic microscopy
,”
Ultrasonics
38
,
430
437
(
2000
).
2.
A.
Roelofs
,
U.
Böttger
,
R.
Waser
,
F.
Schlaphof
,
S.
Trogisch
, and
L. M.
Eng
, “
Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy
,”
Appl. Phys. Lett.
77
,
3444
3446
(
2000
).
3.
N.
Balke
,
I.
Bdikin
,
S. V.
Kalinin
, and
A. L.
Kholkin
, “
Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future
,”
J. Am. Ceram. Soc.
92
,
1629
1647
(
2009
).
4.
S.
Jesse
,
S. V.
Kalinin
,
R.
Proksch
,
A. P.
Baddorf
, and
B. J.
Rodriguez
, “
The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale
,”
Nanotechnology
18
,
435503
(
2007
).
5.
S.
Jesse
and
S. V.
Kalinin
, “
Band excitation in scanning probe microscopy: Sines of change
,”
J. Phys. D: Appl. Phys.
44
,
464006
(
2011
).
6.
B. J.
Rodriguez
,
C.
Callahan
,
S. V.
Kalinin
, and
R.
Proksch
, “
Dual-frequency resonance-tracking atomic force microscopy
,”
Nanotechnology
18
,
475504
(
2007
).
7.
A.
Gannepalli
,
D. G.
Yablon
,
A. H.
Tsou
, and
R.
Proksch
, “
Corrigendum: Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM
,”
Nanotechnology
24
,
159501
(
2013
).
8.
N.
Balke
,
S.
Jesse
,
A. N.
Morozovska
,
E.
Eliseev
,
D. W.
Chung
,
Y.
Kim
,
L.
Adamczyk
,
R. E.
García
,
N.
Dudney
, and
S. V.
Kalinin
, “
Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
,”
Nat. Nanotechnol.
5
,
749
754
(
2010
).
9.
S.
Jesse
,
A.
Kumar
,
T. M.
Arruda
,
Y.
Kim
,
S. V.
Kalinin
, and
F.
Ciucci
, “
Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level
,”
MRS Bull.
37
,
651
658
(
2012
).
10.
S. Y.
Luchkin
,
K.
Romanyuk
,
M.
Ivanov
, and
A. L.
Kholkin
, “
Li transport in fresh and aged LiMn2O4 cathodes via electrochemical strain microscopy
,”
J. Appl. Phys.
118
,
072016
(
2015
).
11.
D. O.
Alikin
,
A. V.
Ievlev
,
S. Y.
Luchkin
,
A. P.
Turygin
,
V. Y.
Shur
,
S. V.
Kalinin
, and
A. L.
Kholkin
, “
Characterization of LiMn2O4 cathodes by electrochemical strain microscopy
,”
Appl. Phys. Lett.
108
,
113106
(
2016
).
12.
N.
Balke
,
S.
Jesse
,
P.
Yu
,
B.
Carmichael
,
S. V.
Kalinin
, and
A.
Tselev
, “
Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy
,”
Nanotechnology
27
,
425707
(
2016
).
13.
A.
Tselev
,
A. N.
Morozovska
,
A.
Udod
,
E. A.
Eliseev
, and
S. V.
Kalinin
, “
Self-consistent modeling of electrochemical strain microscopy of solid electrolytes
,”
Nanotechnology
25
,
445701
(
2014
).
14.
N.
Balke
,
S.
Jesse
,
B.
Carmichael
,
M. B.
Okatan
,
I. I.
Kravchenko
,
S. V.
Kalinin
, and
A.
Tselev
, “
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
,”
Nanotechnology
28
,
065704
(
2017
).
15.
S.
Bradler
,
S. R.
Kachel
,
A.
Schirmeisen
, and
B.
Roling
, “
A theoretical model for the cantilever motion in contact-resonance atomic force microscopy and its application to phase calibration in piezoresponse force and electrochemical strain microscopy
,”
J. Appl. Phys.
120
,
165107
(
2016
).
16.
M.
Gellert
,
K. I.
Gries
,
J.
Zakel
,
S.
Kranz
,
S.
Bradler
,
E.
Hornberger
,
S.
Müller
,
C.
Yada
,
F.
Rosciano
,
K.
Volz
 et al, “
Charge transfer across the interface between LiNi0.5Mn1.5O4 high-voltage cathode films and solid electrolyte films
,”
J. Electrochem. Soc.
162
,
A754
A759
(
2015
).
17.
J.
Kruempelmann
,
D.
Dietzel
,
A.
Schirmeisen
,
C.
Yada
,
F.
Rosciano
, and
B.
Roling
, “
Nanoscale electrochemical measurements on a lithium-ion conducting glass ceramic: In-situ monitoring of the lithium particle growth
,”
Electrochem. Commun.
18
,
74
77
(
2012
).
18.
U.
Rabe
,
E.
Kester
, and
W.
Arnold
, “
Probing linear and non-linear tip-sample interaction forces by atomic force acoustic microscopy
,”
Surf. Interface Anal.
27
,
386
391
(
1999
).
19.
A.
Schirmeisen
and
B.
Roling
, “
Characterizing ion dynamics in nanoscopic volumes: Time-domain electrostatic force spectroscopy on solid electrolytes
,”
Monatsh. Chem. - Chem. Mon.
140
,
1103
1112
(
2009
).
20.
J.
Tan
and
A.
Tiwari
, “
Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery
,”
ECS Solid State Lett.
1
,
Q57
Q60
(
2012
).
21.
D.
Seol
,
H.
Seo
,
S.
Jesse
, and
Y.
Kim
, “
Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions
,”
J. Appl. Phys.
118
,
072014
(
2015
).
22.
Q.
Ling
,
Z.
Yu
,
H.
Xu
,
G.
Zhu
,
X.
Zhang
,
Y.
Zhao
, and
A.
Yu
, “
Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte
,”
Mater. Lett.
169
,
42
45
(
2016
).
23.
Y.
Cui
,
M. M.
Mahmoud
,
M.
Rohde
,
C.
Ziebert
, and
H. J.
Seifert
, “
Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte
,”
Solid State Ionics
289
,
125
132
(
2016
).
24.
R.
Proksch
, “
Electrochemical strain microscopy of silica glasses
,”
J. Appl. Phys.
116
,
066804
(
2014
).
You do not currently have access to this content.