Recent developments of ultra-low heat capacity nanostructured materials revived the interest in the thermo-acoustic (TA) loudspeaker technology, which shows important advantages compared to the classical dynamic loudspeakers as they feature a lower cost and weight, flexibility, conformability to the surface of various shapes, and transparency. The development of the TA loudspeaker technology requires accurate physical models connecting the material properties to the thermal and acoustic speaker's performance. We present here a combined theoretical and experimental analysis of TA loudspeakers, where the electro-thermal and the thermo-acoustic transductions are handled separately, thus allowing an in-depth description of both the pressure and temperature dynamics. The electro-thermal transduction is analyzed by accounting for all the heat flow processes taking place between the TA loudspeaker and the surrounding environment, with focus on their frequency dependence. The thermo-acoustic conversion is studied by solving the coupled thermo-acoustic equations, derived from the Navier-Stokes equations, and by exploiting the Huygens-Fresnel principle to decompose the TA loudspeaker surface into a dense set of TA point sources. A general formulation of the 3D pressure field is derived summing up the TA point source contributions via a Rayleigh integral. The model is validated against temperature and sound pressure level measured on the TA loudspeaker sample made of a Silver Nanowire random network deposited on a polyimide substrate. A good agreement is found between measurements and simulations, demonstrating that the model is capable of connecting material properties to the thermo-acoustic performance of the device, thus providing a valuable tool for the design and optimization of TA loudspeakers.

1.
W. H.
Preece
,
Proc. R. Soc. London
30
,
408
(
1879
).
2.
P.
de Lange
,
Proc. R. Soc. London, A
91
,
239
(
1915
).
3.
H. D.
Arnold
and
I. B.
Crandall
,
Phys. Rev.
10
,
22
(
1917
).
4.
L.
Xiao
 et al.,
Nano Lett.
8
,
4539
4545
(
2008
).
5.
A. E.
Aliev
, “
Thermophones using carbon nanotubes and alternative nanostructures for high power sound generation and noise cancellation
,” in Proceedings of the 43rd International Congress on Noise Control Engineering: Improving the World through Noise Control (INTERNOISE)
, Melbourne, Australia, 16–19 November 2014 (
Australian Acoustical Society
,
Melbourne
,
2014
), pp.
1
10
.
6.
D.
Langley
 et al.,
Nanotechnology
24
(
45
),
452001
(
2013
).
7.
D. J.
Finn
,
M.
Lotya
, and
J. N.
Coleman
,
ACS Appl. Mater. Interfaces
7
(
17
),
9254
9261
(
2015
).
8.
M.
Bobinger
 et al.,
Phys. Status Solidi A
214
,
1600466
(
2017
).
9.
V.
Vesterinen
 et al.,
Nano Lett.
10
(
12
),
5020
5024
(
2010
).
10.
H.
Tian
 et al.,
Appl. Phys. Lett.
99
,
043503
(
2011
).
11.
H.
Hu
 et al.,
AIP Adv.
2
,
032106
(
2012
).
12.
H.
Hu
,
Y.
Wang
, and
Z.
Wang
,
J. Phys. D: Appl. Phys.
45
,
345401
(
2012
).
13.
C. W.
Lim
,
L. H.
Tong
, and
Y. C.
Li
,
J. Sound Vibr.
332
,
5451
(
2013
).
14.
M.
Daschewski
 et al.,
J. Appl. Phys.
114
,
114903
(
2013
).
15.
R.
Dutta
 et al.,
J. Phys. Chem. C
118
,
29101
(
2014
).
16.
H.
Hu
,
Y.
Wang
, and
Z.
Wang
,
AIP Adv.
4
,
107114
(
2014
).
17.
S. S.
Asadzadeh
,
A.
Moosavi
,
C.
Huynh
, and
O.
Saleki
,
J. Appl. Phys.
117
,
095101
(
2015
).
18.
S.
Colasanti
,
V.
Deep Bhatt
,
A.
Abdelhalim
, and
P.
Lugli
,
IEEE Trans. Electron Devices
63
(
3
),
1346
1351
(
2016
).
19.
A. R.
Madaria
,
A.
Kumar
,
F. N.
Ishikawa
, and
C.
Zhou
,
Nano Res.
3
,
564
573
(
2010
).
20.
J.
Jiu
 et al.,
J. Mater. Chem.
22
,
23561
23567
(
2012
).
21.
T. L.
Bergman
and
F. P.
Incropera
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
Hoboken
,
2011
).
22.
D. W.
Hahn
and
M. N.
Özışık
,
Heat Conduction
(
Wiley
,
Hoboken
,
2011
).
23.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
Wiley
,
New York
,
2000
).
24.
L.
Beranek
and
T.
Mellow
,
Acoustics: Sound Fields and Transducers
(
Academic Press
,
Oxford
,
2012
).
25.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton
,
1986
).
26.
AES standard for acoustics—Methods of measuring and specifying the performance of loudspeakers for professional applications—Drive units, Standard No. AES2-2012.
27.
A.
Farina
, “
Simultaneous Measurement of Impulse Response and Distortion with a Swept-Sine Technique
,” paper
presented at the AES 108th Convention
, February
2000
.
28.
A.
Farina
, “
Advancements in Impulse Response Measurements by Sine Sweeps
,” paper
presented at the AES 122nd Convention
, May
2007
.
You do not currently have access to this content.