This paper utilizes an analytical and a filament dissolution model to calculate the local temperature increase in conducting filaments (CFs) of pulsed laser ablated unipolar NiO resistive switching memory devices. Electrical current voltage characteristics indicate unipolar switching. The formation of NiO phases is confirmed from the X-ray diffraction study. Transmission electron microscopy confirms the polycrystalline nature of NiO films having a thickness of ∼20 nm. Electrothermal simulations based on the filament dissolution model are performed using COMSOL Multiphysics® to model the CF rupture during the reset transition in the samples owing to the Joule heating effect. Obtained temperature profiles from the simulations are compared with the analytical model. Both the models corroborate with each other, allowing us to closely approximate the maximum temperature across the CF (Tcrit). This is the point corresponding to which the voltage applied across the cell (Vreset) drives the device into the reset state. The effect of annealing temperature on the maximum temperature, reset voltage, and CF diameter of the device is also discussed. The CF diameter and area of the filament are precisely estimated from the simulation.

1.
H.-S. P.
Wong
,
C.
Ahn
,
J.
Cao
,
H.-Y.
Chen
,
S. B.
Eryilmaz
,
S. W.
Fong
,
J. A.
Incorvia
,
Z.
Jiang
,
H.
Li
,
C.
Neumann
,
K.
Okabe
,
S.
Qin
,
J.
Sohn
,
Y.
Wu
,
S.
Yu
, and
X.
Zheng
, see https://nano.stanford.edu/stanford-memory-trends for “
Stanford Memory Trends
” (last accessed March 21,
2017
).
2.
D.
Ielmini
,
Semicond. Sci. Technol.
31
,
63002
(
2016
).
3.
D.
Ielmini
,
IEEE Trans. Electron Devices
58
,
4309
(
2011
).
4.
R.
Waser
and
M.
Aono
,
Nat. Mater.
6
,
833
(
2007
).
5.
K.
Tsunoda
,
K.
Kinoshita
,
H.
Noshiro
,
Y.
Yamazaki
,
T.
Jizuka
,
Y.
Ito
,
A.
Takahashi
,
A.
Okano
,
Y.
Sato
,
T.
Fukano
,
M.
Aoki
, and
Y.
Sugiyama
, in
IEDM Tech. Dig.
(
2007
), pp.
767
770
.
6.
Z.
Jiang
,
Y.
Wu
,
S.
Yu
,
L.
Yang
,
K.
Song
,
Z.
Karim
, and
H.-S. P.
Wong
,
IEEE Trans. Electron Devices
63
(5),
1884
1892
(
2016
).
7.
D.
Panda
,
C. Y.
Huang
, and
T. Y.
Tseng
,
Appl. Phys. Lett.
100
,
112901
(
2012
).
8.
D.
Ielmini
,
F.
Nardi
, and
C.
Cagli
,
IEEE Trans. Electron Devices
58
,
3246
(
2011
).
9.
F. M.
Simanjuntak
,
O. K.
Prasad
,
D.
Panda
,
C.-A.
Lin
,
T.-L.
Tsai
,
K.-H.
Wei
, and
T.-Y.
Tseng
,
Appl. Phys. Lett.
108
,
183506
(
2016
).
10.
M.
Ismail
,
E.
Ahmed
,
A.
Rana
,
F.
Hussain
,
M.
Nadeem
,
D.
Panda
, and
N.
Shah
,
ACS Appl. Mater. Interfaces
8
,
6127
6136
(
2016
).
11.
T. N.
Fang
,
S.
Kaza
,
S.
Haddad
,
A.
Chen
,
Y. C.
Wu
,
Z.
Lan
,
S.
Avanzino
,
D.
Liao
,
C.
Gopalan
,
S.
Choi
,
S.
Mahdavi
,
M.
Buynoski
,
Y.
Lin
,
C.
Marrian
,
C.
Bill
,
M.
Vanbuskirk
, and
M.
Taguchi
,
Tech. Dig.-Int. Electron Devices Meet.
2006
,
789
792
.
12.
F. M.
Simanjuntak
,
D.
Panda
,
T.-L.
Tsai
,
C.-A.
Lin
,
K.-H.
Wei
, and
T.-Y.
Tseng
,
Appl. Phys. Lett.
107
,
33505
(
2015
).
13.
M.
Ismail
,
C. Y.
Huang
,
D.
Panda
,
C. J.
Hung
,
T. L.
Tsai
,
J. H.
Jieng
,
C. A.
Lin
,
U.
Chand
,
A. M.
Rana
,
E.
Ahmed
,
I.
Talib
,
M. Y.
Nadeem
, and
T. Y.
Tseng
,
Nanoscale Res. Lett.
9
,
45
(
2014
).
14.
N. W.
Ashcroft
and
N. D.
Mermin
, Solid State Physics (Holt, Rinehart and Winston, 1976), ISBN 0030839939.
15.
F. M.
Simanjuntak
,
D.
Panda
,
W.-K.
Hwa
, and
T.-Y.
Tseng
,
Nanoscale Res. Lett.
11
(
1
),
368
331
(
2016
).
16.
D.
Panda
,
F. M.
Simanjuntak
, and
T.-Y.
Tseng
,
AIP Adv.
6
,
75314
(
2016
).
17.
S.
Kim
,
S.-J.
Kim
,
K. M.
Kim
,
S. R.
Lee
,
M.
Chang
,
E.
Cho
,
Y.-B.
Kim
,
C. J.
Kim
,
U.-I.
Chung
, and
I.-K.
Yoo
,
Sci. Rep.
3
,
1680
(
2013
).
18.
F. M.
Simanjuntak
,
D.
Panda
,
T.-L.
Tsai
,
C.-A.
Lin
,
K.-H.
Wei
, and
T.-Y.
Tseng
,
J. Mater. Sci.
50
(
21
),
6961
6969
(
2015
).
19.
S.
Sachin Kumar
,
P. P.
Sahu
, and
D.
Panda
, “
Barrier potential engineering in Ti/HfO2/Pt resistive random access memory
,”
J. Nanosci. Nanotechnol.
(in press).
20.
S.
Larentis
,
F.
Nardi
,
S.
Balatti
,
D. C.
Gilmer
, and
D.
Ielmini
,
IEEE Trans. Electron Devices
59
,
2468
(
2012
).
21.
D.
Panda
and
T.-Y.
Tseng
,
Ferroelectrics
471
,
23
(
2014
).
22.
D.
Panda
,
A.
Dhar
, and
S. K.
Ray
,
IEEE Trans. Nanotechnol.
11
,
51
(
2012
).
23.
S.
Lombardo
,
J. H.
Stathis
,
B. P.
Linder
,
K. L.
Pey
,
F.
Palumbo
, and
C. H.
Tung
,
J. Appl. Phys.
98
,
121301
(
2005
).
24.
Y.
Yang
,
W.
,
Y.
Yao
,
J.
Sun
,
C.
Gu
,
L.
Gu
,
Y.
Wang
,
X.
Duan
, and
R.
Yu
,
Sci. Rep.
4
,
3890
(
2014
).
25.
D.
Panda
,
A.
Dhar
, and
S. K.
Ray
, in
2nd International Workshop on Electron Devices and Semiconductor Technology (IEDST)
(
2009
), Vol. 1.
26.
J.
Kim
,
K.
Jung
,
Y.
Kim
,
Y.
Jo
,
S.
Cho
,
H.
Woo
,
S.
Lee
,
A. I.
Inamdar
,
J.
Hong
,
J.
Lee
,
H.
Kim
, and
H.
Im
,
Sci. Rep.
6
,
23930
(
2016
).
27.
S.
Chakrabarti
,
S.
Samanta
,
S.
Maikap
,
S. Z.
Rahaman
, and
H.-M.
Cheng
,
Nanoscale Res. Lett.
11
,
389
(
2016
).
28.
D.
Ielmini
,
S.
Spiga
,
F.
Nardi
,
C.
Cagli
,
A.
Lamperti
,
E.
Cianci
, and
M.
Fanciulli
,
J. Appl. Phys.
109
,
034506
(
2011
).
29.
D.
Panda
and
M.
Panda
,
J. Nanosci. Nanotechnol.
16
(
1
),
1216
1219
(
2016
).
30.
S.
Long
,
L.
Perniola
,
C.
Cagli
,
J.
Buckley
,
X.
Lian
,
E.
Miranda
,
F.
Pan
,
M.
Liu
, and
J.
Suñé
,
Sci. Rep.
3
,
2929
(
2013
).
31.
D.
Panda
,
A.
Dhar
, and
S. K.
Ray
,
J. Appl. Phys.
108
,
104513
(
2010
).
32.
U.
Russo
,
D.
Ielmini
,
C.
Cagli
, and
A. L.
Lacaita
,
IEEE Trans. Electron Devices
56
,
186
(
2009
).
33.
D.
Ielmini
,
F.
Nardi
, and
C.
Cagli
,
Nanotechnology
22
,
254022
(
2011
).
34.
U.
Russo
,
D.
Ielmini
,
C.
Cagli
,
A. L.
Lacaita
,
S.
Spiga
, and
M. F. M.
Perego
,
IEDM Tech. Dig.
2
,
775
(
2007
).
35.
U.
Russo
,
D.
Ielmini
,
C.
Cagli
, and
A. L.
Lacaita
,
IEEE Trans. Electron Devices
56
,
193
(
2009
).
36.
K.
Jung
,
H.
Seo
,
Y.
Kim
,
H.
Im
,
J.
Hong
,
J. W.
Park
, and
J. K.
Lee
,
Appl. Phys. Lett.
90
,
052104
(
2007
).
37.
J.
Bin Yun
,
S.
Kim
,
S.
Seo
,
M. J.
Lee
,
D. C.
Kim
,
S. E.
Ahn
,
Y.
Park
,
J.
Kim
, and
H.
Shin
,
Phys. Status Solidi RRL
1
,
280
(
2007
).
38.
S. M.
Lee
,
D. G.
Cahill
, and
T. H.
Allen
,
Phys. Rev. B
52
,
253
(
1995
).
39.
T.
Ohgai
,
L.
Gravier
,
X.
Hoffer
,
M.
Lindeberg
,
K.
Hjort
,
R.
Spohr
, and
J.-P.
Ansermet
,
J. Phys. D: Appl. Phys.
36
,
3109
(
2003
).
40.
D. N.
Davydov
,
J.
Haruyama
,
D.
Routkevitch
,
B. W.
Statt
,
D.
Ellis
,
M.
Moskovits
, and
J. M.
Xu
,
Phys. Rev. B
57
,
13550
(
1998
).
41.
T.
Karakasidis
and
M.
Meyer
,
Phys. Rev. B
55
,
13853
(
1997
).
You do not currently have access to this content.