Like most of the vertical transistors, the Patterned Source Vertical Organic Field Effect Transistor (PS-VOFET) does not exhibit saturation in the output characteristics. The importance of achieving a good saturation is demonstrated in a vertical organic light emitting transistor; however, this is critical for any application requiring the transistor to act as a current source. Thereafter, a 2D simulation tool was used to explain the physical mechanisms that prevent saturation as well as to suggest ways to overcome them. We found that by isolating the source facet from the drain-source electric field, the PS-VOFET architecture exhibits saturation. The process used for fabricating such saturation-enhancing structure is then described. The new device demonstrated close to an ideal saturation with only 1% change in the drain-source current over a 10 V change in the drain-source voltage.

1.
R. A.
Street
,
Adv. Mater.
21
(
20
),
2007
2022
(
2009
).
2.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
(
22
),
2945
2986
(
2012
).
3.
Z.
Bao
and
X.
Chen
,
Adv. Mater.
28
(
22
),
4177
4179
(
2016
).
4.
T.
Someya
,
Z.
Bao
, and
G. G.
Malliaras
,
Nature
540
(
7633
),
379
385
(
2016
).
5.
J.
Kwon
,
Y.
Takeda
,
K.
Fukuda
,
K.
Cho
,
S.
Tokito
, and
S.
Jung
,
ACS Nano
10
(
11
),
10324
10330
(
2016
).
6.
J. I.
Nishizawa
,
T.
Terasaki
, and
J.
Shibata
,
IEEE Trans. Electron Devices
ED22
(
4
),
185
197
(
1975
).
7.
K.
Kudo
,
D.
Xing Wang
,
M.
Iizuka
,
S.
Kuniyoshi
, and
K.
Tanaka
,
Thin Solid Films
331
,
51
54
(
1998
).
8.
L. P.
Ma
and
Y.
Yang
,
Appl. Phys. Lett.
85
(
21
),
5084
5086
(
2004
).
9.
N.
Stutzmann
,
R. H.
Friend
, and
H.
Sirringhaus
,
Sci.
299
(
5614
),
1881
1884
(
2003
).
10.
S.
Fujimoto
,
K.
Nakayama
, and
M.
Yokoyama
,
Appl. Phys. Lett.
87
(
13
),
133503
(
2005
).
11.
A. J.
Ben-Sasson
,
M.
Greenman
,
Y.
Roichman
, and
N.
Tessler
,
Israel J. Chem.
54
(
5-6
),
568
585
(
2014
).
12.
B.
Lussem
,
A.
Gunther
,
A.
Fischer
,
D.
Kasemann
, and
K.
Leo
,
J. Phys.: Condens. Matter
27
(
44
),
443003
(
2015
).
13.
K.
Nakamura
,
T.
Hata
,
A.
Yoshizawa
,
K.
Obata
,
H.
Endo
, and
K.
Kudo
,
Appl. Phys. Lett.
89
(
10
),
103525
(
2006
).
14.
O.
Globerman
, M.Sc. thesis,
Technion Israel Institute of Technology
,
2006
.
15.
B.
Liu
,
M. A.
McCarthy
,
Y.
Yoon
,
D. Y.
Kim
,
Z.
Wu
,
F.
So
,
P. H.
Holloway
,
J. R.
Reynolds
,
J.
Guo
, and
A. G.
Rinzler
,
Adv. Mater.
20
(
19
),
3605
3609
(
2008
).
16.
A. J.
Ben-Sasson
,
E.
Avnon
,
E.
Ploshnik
,
O.
Globerman
,
R.
Shenhar
,
G. L.
Frey
, and
N.
Tessler
,
Appl. Phys. Lett.
95
(
21
),
213301
(
2009
).
17.
A. J.
Ben-Sasson
,
G.
Ankonina
,
M.
Greenman
,
M. T.
Grimes
, and
N.
Tessler
,
ACS Appl. Mater. Interfaces
5
(
7
),
2462
2468
(
2013
).
18.
H.
Kleemann
,
A. A.
Günther
,
K.
Leo
, and
B.
Lüssem
,
Small
9
(
21
),
3670
3677
(
2013
).
19.
M.
Greenman
,
A. J.
Ben-Sasson
,
Z.
Chen
,
A.
Facchetti
, and
N.
Tessler
,
Appl. Phys. Lett.
103
(
7
),
073502
(
2013
).
20.
A. J.
Ben-Sasson
,
D.
Azulai
,
H.
Gilon
,
A.
Facchetti
,
G.
Markovich
, and
N.
Tessler
,
ACS Appl. Mater. Interfaces
7
(
4
),
2149
2152
(
2015
).
21.
M.
Furno
,
H.
Kleemann
,
G.
Schwartz
, and
J.
Blochwitz-Nimoth
,
SID Symp. Dig. Tech. Pap.
46
(
1
),
597
600
(
2015
).
22.
M.
Greenman
,
S.
Yoffis
, and
N.
Tessler
,
Appl. Phys. Lett.
108
(
4
),
043301
(
2016
).
23.
H.
Kwon
,
M.
Kim
,
H.
Cho
,
H.
Moon
,
J.
Lee
, and
S.
Yoo
,
Adv. Funct. Mater.
26
(
38
),
6888
6895
(
2016
).
24.
X.
Song
,
Y.
Zhang
,
H.
Zhang
,
Y.
Yu
,
M.
Cao
,
Y.
Che
,
J.
Wang
,
H.
Dai
,
J.
Yang
,
X.
Ding
, and
J.
Yao
,
Nanotechnology
27
,
405201
(
2016
).
25.
X. J.
She
,
D.
Gustafsson
, and
H.
Sirringhaus
,
Adv. Mater.
29
(
8
),
8
(
2017
).
26.
Z.
Xu
,
S. H.
Li
,
L.
Ma
,
G.
Li
, and
Y.
Yang
,
Appl. Phys. Lett.
91
(
9
),
3
(
2007
).
27.
M. A.
McCarthy
,
B.
Liu
,
E. P.
Donoghue
,
I.
Kravchenko
,
D. Y.
Kim
,
F.
So
, and
A. G.
Rinzler
,
Sci.
332
(
6029
),
570
573
(
2011
).
28.
C. M.
Keum
,
I. H.
Lee
,
S. H.
Lee
,
G. J.
Lee
,
M. H.
Kim
, and
S. D.
Lee
,
Opt. Express
22
(
12
),
14750
14756
(
2014
).
29.
H.
Yu
,
Z.
Dong
,
J.
Guo
,
D.
Kim
, and
F.
So
,
ACS Appl. Mater. Interfaces
8
,
10430
10435
(
2016
).
30.
G.
Lee
,
I.-H.
Lee
,
H.-L.
Park
,
S.-H.
Lee
,
J.
Han
,
C.
Lee
,
C.-M.
Keum
, and
S.-D.
Lee
,
J. Appl. Phys.
121
(
2
),
024502
(
2017
).
31.
K.
Nakamura
,
T.
Hata
,
A.
Yoshizawa
,
K.
Obata
,
H.
Endo
, and
K.
Kudo
,
Jpn. J. Appl. Phys., Part 1
47
(
3S
),
1889
(
2008
).
32.
A. J.
Ben-Sasson
and
N.
Tessler
,
J. Appl. Phys.
110
(
4
),
044501
(
2011
).
33.
A. J.
Ben-Sasson
and
N.
Tessler
,
Proc. SPIE
8117
,
81170Z
(
2011
).
34.
A. J.
Ben-Sasson
and
N.
Tessler
,
Nano Lett.
12
(
9
),
4729
4733
(
2012
).
35.
M.
Greenman
,
A. J.
Ben-Sasson
, and
N.
Tessler
, Israel patent PCT/IL2014/051066 (7 December
2014
).
36.
N.
Tessler
and
Y.
Roichman
,
Appl. Phys. Lett.
79
(
18
),
2987
2989
(
2001
).
37.
A. A.
Günther
,
M.
Sawatzki
,
P.
Formánek
,
D.
Kasemann
, and
K.
Leo
,
Adv. Funct. Mater.
26
,
768
775
(
2016
).
You do not currently have access to this content.