We present a systematic study on the relation of the electrocaloric effect (ECE) and the relaxor state transition of BaZrxTi1−xO3 (BZT) using a combination of computer simulation and experiment. The results of canonical and microcanonical lattice-based Monte Carlo simulations with a Ginzburg-Landau-type Hamiltonian are compared with measurements of BaZrxTi1−xO3 (x = 0.12 and 0.2) samples. In particular, we study the ECE at various temperatures, domain patterns by piezoresponse force microscopy at room temperature, and the P-E loops at various temperatures. We find three distinct regimes depending on the Zr-concentration. In the compositional range 0x0.2, ferroelectric domains are visible, but the ECE peak drops considerably with increasing Zr-concentration. In the range 0.3x0.7, relaxor features become prominent, and the decrease in the ECE with Zr-concentration is moderate. In the range of high concentrations, x0.8, the material is almost nonpolar, and there is no ECE peak visible. Our results reveal that BZT with a Zr-concentration around x=0.120.3 exhibits a relatively large ECE in a wide temperature range at rather low temperature.

1.
Electrocaloric Materials
, edited by
T.
Correia
and
Q.
Zhang
(
Springer-Verlag
,
Berlin/Heidelberg
,
2014
).
2.
S.
Fähler
,
U. K.
Rößler
,
O.
Kastner
,
J.
Eckert
,
G.
Eggeler
,
H.
Emmerich
,
P.
Entel
,
S.
Müller
,
E.
Quandt
, and
K.
Albe
,
Adv. Eng. Mater.
14
,
10
(
2012
).
3.
X.-S.
Qian
,
H.-J.
Ye
,
Y.-T.
Zhang
,
H.
Gu
,
X.
Li
,
C. A.
Randall
, and
Q. M.
Zhang
,
Adv. Funct. Mater.
24
,
1300
(
2014
).
4.
H.-J.
Ye
,
X.-S.
Qian
,
D.-Y.
Jeong
,
S.
Zhang
,
Y.
Zhou
,
W.-Z.
Shao
,
L.
Zhen
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
105
,
152908
(
2014
).
5.
A. A.
Bokov
,
M.
Maglione
,
A.
Simon
, and
Z.-G.
Ye
,
Ferroelectrics
337
,
169
(
2006
).
6.
J. A.
Smolenskii
and
V. A.
Usupov
,
Zh. Tekh. Fiz.
24
,
1375
(
1954
).
7.
V.
Westphal
,
W.
Kleemann
, and
M. D.
Glinchuk
,
Phys. Rev. Lett.
68
,
847
(
1992
).
8.
M. D.
Glinchuk
and
R.
Farhi
,
J. Phys.: Condens. Matter
8
,
6985
(
1996
).
9.
R.
Pirc
and
R.
Blinc
,
Phys. Rev. B
60
,
13470
(
1999
).
10.
Z.
Yu
,
C.
Ang
,
R.
Guo
, and
A. S.
Bhalla
,
J. Appl. Phys.
92
,
2655
(
2002
).
11.
T.
Maiti
,
R.
Guo
, and
A. S.
Bhalla
,
J. Appl. Phys.
100
,
114109
(
2006
).
12.
A.
Dixit
,
S. B.
Majumder
,
R. S.
Katiyar
, and
A. S.
Bhalla
, in
Frontiers of Ferroelectricity
(
Springer
US
,
2006
), pp.
87
96
.
13.
R.-H.
Liang
,
X.-L.
Dong
,
Y.
Chen
,
F.
Cao
, and
Y.-L.
Wang
,
Ceram. Int.
33
,
957
(
2007
).
14.
S.
Ke
,
H.
Fan
,
H.
Huang
,
H. L. W.
Chan
, and
S.
Yu
,
J. Appl. Phys.
104
,
034108
(
2008
).
15.
J. W.
Xiong
,
B.
Zeng
, and
W. Q.
Cao
,
J. Electroceram.
21
,
124
(
2008
).
16.
N. K.
Karan
,
R. S.
Katiyar
,
T.
Maiti
,
R.
Guo
, and
A. S.
Bhalla
,
J. Raman Spectrosc.
40
,
370
(
2009
).
17.
T.
Maiti
,
R.
Guo
, and
A. S.
Bhalla
,
J. Am. Ceram. Soc.
91
,
1769
(
2008
).
18.
D.
Ricinschi
,
C. E.
Ciomaga
,
L.
Mitoseriu
,
V.
Buscaglia
, and
M.
Okuyama
,
J. Eur. Ceram. Soc.
30
,
237
(
2010
).
19.
V. V.
Shvartsman
and
D. C.
Lupascu
,
J. Am. Ceram. Soc.
95
,
1
(
2012
).
20.
T.
Maiti
,
R.
Guo
, and
A. S.
Bhalla
,
Ferroelectrics
425
,
4
(
2011
).
21.
W.
Kleemann
,
J.
Dec
, and
S.
Miga
,
Phase Transitions
88
,
234
(
2015
), 00003.
22.
V. V.
Shvartsman
,
J.
Zhai
, and
W.
Kleemann
,
Ferroelectrics
379
,
77
(
2009
).
23.
A.
Bilić
and
J. D.
Gale
,
Phys. Rev. B
79
,
174107
(
2009
).
24.
C.
Laulhé
,
A.
Pasturel
,
F.
Hippert
, and
J.
Kreisel
,
Phys. Rev. B
82
,
132102
(
2010
).
25.
D.
Sherrington
,
Phys. Rev. Lett.
111
,
227601
(
2013
).
26.
L.
Padurariu
,
C.
Enachescu
, and
L.
Mitoseriu
,
J. Phys.: Condens. Matter
23
,
325901
(
2011
).
27.
Y.-B.
Ma
,
K.
Albe
, and
B.-X.
Xu
,
Phys. Rev. B
91
,
184108
(
2015
).
28.
Y.-B.
Ma
,
N.
Novak
,
J.
Koruza
,
T.
Yang
,
K.
Albe
, and
B.-X.
Xu
,
Phys. Rev. B
94
,
100104(R)
(
2016
).
29.
Y.-B.
Ma
,
A.
Grünebohm
,
K.-C.
Meyer
,
K.
Albe
, and
B.-X.
Xu
,
Phys. Rev. B
94
,
094113
(
2016
).
30.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
49
,
5828
(
1994
).
31.
K.
Rabe
,
C.
Ahn
, and
J.-M.
Triscone
,
Physics of Ferroelectrics. A Modern Perspective
(
Springer-Verlag
,
Berlin, Germany
,
2008
).
32.
J. L.
Servoin
,
F.
Gervais
,
A. M.
Quittet
, and
Y.
Luspin
,
Phys. Rev. B
21
,
2038
(
1980
).
33.
J.
Hlinka
and
P.
Márton
,
Phys. Rev. B
74
,
104104
(
2006
).
34.
S.
Nayak
,
B.
Sahoo
,
T. K.
Chaki
, and
D.
Khastgir
,
RSC Adv.
4
,
1212
(
2014
).
35.
A. R.
Akbarzadeh
,
I.
Kornev
,
C.
Malibert
,
L.
Bellaiche
, and
J. M.
Kiat
,
Phys. Rev. B
72
,
205104
(
2005
).
36.
R.
Pantou
,
C.
Dubourdieu
,
F.
Weiss
,
J.
Kreisel
,
G.
Köbernik
, and
W.
Haessler
,
Mater. Sci. Semicond. Process.
5
,
237
(
2002
).
37.
W.
Cao
and
G. R.
Barsch
,
Phys. Rev. B
41
,
4334
(
1990
).
38.
J.-M.
Liu
,
X.
Wang
,
H. L. W.
Chan
, and
C. L.
Choy
,
Phys. Rev. B
69
,
094114
(
2004
).
39.
M. L. V.
Mahesh
,
V. V.
Bhanu Prasad
, and
A. R.
James
,
J. Alloys Compd.
611
,
43
(
2014
).
40.
F.
Moura
,
A. Z.
Simões
,
B. D.
Stojanovic
,
M. A.
Zaghete
,
E.
Longo
, and
J. A.
Varela
,
J. Alloys Compd.
462
,
129
(
2008
).
41.
H.-X.
Cao
and
Z.-Y.
Li
,
J. Appl. Phys.
106
,
094104
(
2009
).
42.
R.
Pirc
,
Z.
Kutnjak
,
R.
Blinc
, and
Q. M.
Zhang
,
J. Appl. Phys.
110
,
074113
(
2011
).
43.
L. J.
Dunne
,
M.
Valant
,
A.-K.
Axelsson
,
G.
Manos
, and
N. M.
Alford
,
J. Phys. D: Appl. Phys.
44
,
375404
(
2011
).
44.
I.
Ponomareva
and
S.
Lisenkov
,
Phys. Rev. Lett.
108
,
167604
(
2012
).
You do not currently have access to this content.