Electro-optic waveguide modulators exploiting the carrier-induced epsilon-near-zero effect in transparent conducting oxides are comprehensively studied and evaluated using a rigorous multi-physics modeling framework. The examined amplitude modulators integrate indium tin oxide with two representative examples of the silicon-on-insulator technology, the silicon-rib and silicon-slot platform, with the latter design exhibiting superior performance, featuring μm modulation lengths, switching speeds exceeding 100 GHz, and a sub-pJ per bit of energy consumption. The effect of free carriers is rigorously introduced by combining the drift-diffusion model for the description of the carrier dynamics with near-infrared carrier-dependent permittivity models, leading to a seamless and physically consistent integration of solid-state physics and Maxwell wave theory on a unified finite-element platform.

1.
A.
Chen
and
E.
Murphy
,
Broadband Optical Modulators: Science, Technology, and Applications
(
Taylor & Francis
,
2011
).
2.
D.
Chatzidimitriou
,
G.
Sinatkas
,
T.
Christopoulos
,
A.
Pitilakis
,
E. E.
Kriezis
, and
O.
Tsilipakos
, in
2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST)
(
2016
), pp.
1
4
.
3.
O.
Tsilipakos
,
T. V.
Yioultsis
, and
E. E.
Kriezis
,
J. Appl. Phys.
106
,
093109
(
2009
).
4.
Y.-H.
Kuo
,
Y.
Lee
,
Y.
Ge
,
S.
Ren
,
J.
Roth
,
T.
Kamins
,
D.
Miller
, and
J.
Harris
,
Nature
437
,
1334
(
2005
).
5.
P.
Chaisakul
,
D.
Marris-Morini
,
M.-S.
Rouifed
,
J.
Frigerio
,
D.
Chrastina
,
J.-R.
Coudevylle
,
X. L.
Roux
,
S.
Edmond
,
G.
Isella
, and
L.
Vivien
,
Sci. Technol. Adv. Mater.
15
,
014601
(
2014
).
6.
G. T.
Reed
,
G.
Mashanovich
,
F.
Gardes
, and
D.
Thomson
,
Nat. Photonics
4
,
518
(
2010
).
7.
M.
Liu
,
X.
Yin
,
E.
Ulin-Avila
,
B.
Geng
,
T.
Zentgraf
,
L.
Ju
,
F.
Wang
, and
X.
Zhang
,
Nature
474
,
64
(
2011
).
8.
L.
Alloatti
,
R.
Palmer
,
S.
Diebold
,
K. P.
Pahl
,
B.
Chen
,
R.
Dinu
,
M.
Fournier
,
J.-M.
Fedeli
,
T.
Zwick
,
W.
Freude
,
C.
Koos
, and
J.
Leuthold
,
Light Sci. Appl.
3
,
e173
(
2014
).
9.
T.
Christopoulos
,
G.
Sinatkas
,
O.
Tsilipakos
, and
E. E.
Kriezis
,
Opt. Quantum Electron.
48
,
128
(
2016
).
10.
O.
Tsilipakos
,
T.
Christopoulos
, and
E. E.
Kriezis
,
J. Lightwave Technol.
34
,
1333
(
2016
).
11.
D.
Chatzidimitriou
,
A.
Pitilakis
, and
E. E.
Kriezis
,
J. Appl. Phys.
118
,
023105
(
2015
).
12.
A.
Pitilakis
,
D.
Chatzidimitriou
, and
E. E.
Kriezis
,
Opt. Quantum Electron.
48
,
243
(
2016
).
13.
G. V.
Naik
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Adv. Mater.
25
,
3264
(
2013
).
14.
15.
P.
West
,
S.
Ishii
,
G.
Naik
,
N.
Emani
,
V.
Shalaev
, and
A.
Boltasseva
,
Laser Photonics Rev.
4
,
795
(
2010
).
16.
D. C.
Zografopoulos
and
K. P.
Prokopidis
,
Phys. Rev. Appl.
2
,
064009
(
2014
).
17.
E.
Feigenbaum
,
K.
Diest
, and
H. A.
Atwater
,
Nano Lett.
10
,
2111
(
2010
).
18.
S.
Zhu
,
G. Q.
Lo
, and
D. L.
Kwong
,
Appl. Phys. Lett.
99
,
151114
(
2011
).
19.
Z.
Lu
,
W.
Zhao
, and
K.
Shi
,
IEEE Photonics J.
4
,
735
(
2012
).
20.
V. E.
Babicheva
,
A.
Boltasseva
, and
A. V.
Lavrinenko
,
Nanophotonics
4
,
165
(
2015
).
21.
A. P.
Vasudev
,
J.-H.
Kang
,
J.
Park
,
X.
Liu
, and
M. L.
Brongersma
,
Opt. Express
21
,
26387
(
2013
).
22.
H.
Zhao
,
Y.
Wang
,
A.
Capretti
,
L. D.
Negro
, and
J.
Klamkin
,
IEEE J. Sel. Top. Quantum Electron.
21
,
192
(
2015
).
23.
C.
Huang
,
R. J.
Lamond
,
S. K.
Pickus
,
Z. R.
Li
, and
V. J.
Sorger
,
IEEE Photonics J.
5
,
2202411
(
2013
).
24.
V. E.
Babicheva
,
N.
Kinsey
,
G. V.
Naik
,
M.
Ferrera
,
A. V.
Lavrinenko
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Opt. Express
21
,
27326
(
2013
).
25.
C.
Lin
and
A. S.
Helmy
,
Sci. Rep.
5
,
12313
(
2015
).
26.
V. E.
Babicheva
and
A. V.
Lavrinenko
,
Opt. Commun.
285
,
5500
(
2012
).
27.
A.
Melikyan
,
N.
Lindenmann
,
S.
Walheim
,
P. M.
Leufke
,
S.
Ulrich
,
J.
Ye
,
P.
Vincze
,
H.
Hahn
,
T.
Schimmel
,
C.
Koos
,
W.
Freude
, and
J.
Leuthold
,
Opt. Express
19
,
8855
(
2011
).
28.
A. V.
Krasavin
and
A. V.
Zayats
,
Phys. Rev. Lett.
109
,
053901
(
2012
).
29.
H. W.
Lee
,
G.
Papadakis
,
S. P.
Burgos
,
K.
Chander
,
A.
Kriesch
,
R.
Pala
,
U.
Peschel
, and
H. A.
Atwater
,
Nano Lett.
14
,
6463
(
2014
).
30.
U.
Koch
,
C.
Hoessbacher
,
J.
Niegemann
,
C.
Hafner
, and
J.
Leuthold
,
IEEE Photonics J.
8
(
1
),
4800813
(
2016
).
31.
T.
Amemiya
,
E.
Murai
,
Z.
Gu
,
N.
Nishiyama
, and
S.
Arai
,
J. Opt. Soc. Am. B
31
,
2908
(
2014
).
32.
S.
Zhu
,
G. Q.
Lo
, and
D. L.
Kwong
,
Opt. Express
22
,
17930
(
2014
).
33.
V. J.
Sorger
,
N. D.
Lanzillotti-Kimura
,
R.-M.
Ma
, and
X.
Zhang
,
Nanophotonics
1
,
17
(
2012
).
34.
H.
Kim
,
M.
Osofsky
,
S. M.
Prokes
,
O. J.
Glembocki
, and
A.
Pique
,
Appl. Phys. Lett.
102
,
171103
(
2013
).
35.
I.
Hamberg
and
C. G.
Granqvist
,
J. Appl. Phys.
60
,
R123
(
1986
).
36.
D. L.
Wood
,
K.
Nassau
,
T. Y.
Kometani
, and
D. L.
Nash
,
Appl. Opt.
29
,
604
(
1990
).
37.
R.
Soref
and
B.
Bennett
,
IEEE J. Quantum Electron.
23
,
123
(
1987
).
38.
M.
Nedeljkovic
,
R.
Soref
, and
G. Z.
Mashanovich
,
IEEE Photonics J.
3
,
1171
(
2011
).
39.
R.
Pierret
,
Semiconductor Device Fundamentals
(
Addison-Wesley
,
1996
).
40.
S.
Selberherr
,
Analysis and Simulation of Semiconductor Devices
(
Springer Science & Business Media
,
2012
).
41.
S. M.
Sze
and
M.-K.
Lee
,
Semiconductor Devices: Physics and Technology
, 3rd ed. (
Wiley
,
2012
), p.
548
.
42.
Y.
Ohhata
,
F.
Shinoki
, and
S.
Yoshida
,
Thin Solid Films
59
,
255
(
1979
).
43.
Y.
Shigesato
, in
Handbook of Transparent Conductors
, 1st ed., edited by
D.
Ginley
,
H.
Hosono
, and
D. C.
Paine
(
Springer US
,
2011
), Chap. 5, p.
160
.
44.
A. K.
Kulkarni
and
S. A.
Knickerbocker
,
J. Vac. Sci. Technol. A
14
,
1709
(
1996
).
45.
N. D.
Arora
,
J. R.
Hauser
, and
D. J.
Roulston
,
IEEE Trans. Electron Devices
29
,
292
(
1982
).
46.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
47.
M.
Fox
,
Optical Properties of Solids
, 2nd ed. (
Oxford University Press
,
2010
), p.
192
.
48.
R.
Kim
and
M.
Lundstrom
, see https://nanohub.org/resources/5475 for “Notes on Fermi-Dirac Integrals (3rd edition)” (
2008
).
You do not currently have access to this content.