CoCrFeMnNi is a prototype fcc-structured high-entropy alloy. Numerous efforts have been paid to strengthen CoCrFeMnNi, by replacing Mn with other elements for an enhancement of the solid solution strengthening. 4d transition metals, including Zr, Nb, and Mo, are of interest for this purpose, since they have much larger atomic radii than that of Mn. However, Nb and Mo are known to have a low solid solubility in fcc-structured CoCrFeNi. Compared to Nb and Mo, Zr has an even larger atomic radius. The solid solubility of Zr in fcc-structured CoCrFeNi was investigated in this work, combining both experimental studies and thermodynamic calculations. In addition, based on previous results and new results obtained here, methods to predict the solid solubility in CoCrFeNiMx (M = Zr, Nb, and Mo) alloys were developed. Particularly, the average d-orbital energy level, Md, was re-evaluated in the present work, for an improved predictability of the solid solubility in fcc-structured high entropy alloys containing 4d transition metals.

1.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
,
Adv. Eng. Mater.
6
,
299
(
2004
).
2.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A. J. B.
Vincent
,
Mater. Sci. Eng. A
375–377
,
213
(
2004
).
3.
D.
Miracle
and
O.
Senkov
,
Acta Mater.
122
,
448
(
2017
).
4.
M. C.
Gao
,
J.-W.
Yeh
,
P. K.
Liaw
, and
Y.
Zhang
,
High-Entropy Alloys: Fundamentals and Applications
(
Springer
,
Cham, Switzerland
,
2016
).
5.
D. B.
Miracle
,
J. D.
Miller
,
O. N.
Senkov
,
C.
Woodward
,
M. D.
Uchic
, and
J.
Tiley
,
Entropy
16
,
494
(
2014
).
6.
Y.
Zhang
,
T. T.
Zuo
,
Z.
Tang
,
M. C.
Gao
,
K. A.
Dahmen
,
P. K.
Liaw
, and
Z. P.
Lu
,
Prog. Mater. Sci.
61
,
1
(
2014
).
7.
Z. P.
Lu
,
H.
Wang
,
M. W.
Chen
,
I.
Baker
,
J. W.
Yeh
,
C. T.
Liu
, and
T. G.
Nieh
,
Intermetallics
66
,
67
(
2015
).
8.
S.
Sheikh
,
S.
Shafeie
,
Q.
Hu
,
J.
Ahlström
,
C.
Persson
,
J.
Veselý
,
J.
Zýka
,
U.
Klement
, and
S.
Guo
,
J. Appl. Phys.
120
,
164902
(
2016
).
9.
O. N.
Senkov
,
G. B.
Wilks
,
J. M.
Scott
, and
D. B.
Miracle
,
Intermetallics
19
,
698
(
2011
).
10.
O. N.
Senkov
,
G. B.
Wilks
,
D. B.
Miracle
,
C. P.
Chuang
, and
P. K.
Liaw
,
Intermetallics
18
,
1758
(
2010
).
11.
F.
Granberg
,
K.
Nordlund
,
M. W.
Ullah
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
L.
Wang
,
F.
Djurabekova
,
W.
Weber
, and
Y.
Zhang
,
Phys. Rev. Lett.
116
,
135504
(
2016
).
12.
Y.
Zhang
,
G. M.
Stocks
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
B. C.
Sales
,
L.
Wang
,
L. K.
Béland
,
R. E.
Stoller
, and
G. D.
Samolyuk
,
Nat. Commun.
6
,
8736
(
2015
).
13.
C.
Lu
,
T.
Yang
,
K.
Jin
,
N.
Gao
,
P.
Xiu
,
Y.
Zhang
,
F.
Gao
,
H.
Bei
,
W. J.
Weber
, and
K.
Sun
,
Acta Mater.
127
,
98
(
2017
).
14.
S.
Guo
,
C.
Ng
,
J.
Lu
, and
C. T.
Liu
,
J. Appl. Phys.
109
,
103505
(
2011
).
15.
Z.
Li
,
K. G.
Pradeep
,
Y.
Deng
,
D.
Raabe
, and
C. C.
Tasan
,
Nature
534
,
227
(
2016
).
16.
O. N.
Senkov
,
J. M.
Scott
,
S. V.
Senkova
,
D. B.
Miracle
, and
C. F.
Woodward
,
J. Alloys Compd.
509
,
6043
(
2011
).
17.
B.
Gludovatz
,
A.
Hohenwarter
,
D.
Catoor
,
E. H.
Chang
,
E. P.
George
, and
R. O.
Ritchie
,
Science
345
,
1153
(
2014
).
18.
S.
Guo
and
C. T.
Liu
,
Prog. Nat. Sci.: Mater. Int.
21
,
433
(
2011
).
19.
W. H.
Liu
,
J. Y.
He
,
H. L.
Huang
,
H.
Wang
,
Z. P.
Lu
, and
C. T.
Liu
,
Intermetallics
60
,
1
(
2015
).
20.
F.
He
,
Z. J.
Wang
,
P.
Cheng
,
Q.
Wang
,
J. J.
Li
,
Y. Y.
Dang
,
J. C.
Wang
, and
C. T.
Liu
,
J. Alloys Compd.
656
,
284
(
2016
).
21.
W. H.
Liu
,
Z. P.
Lu
,
J. Y.
He
,
J. H.
Luan
,
Z. J.
Wang
,
B.
Liu
,
Y.
Liu
,
M. W.
Chen
, and
C. T.
Liu
,
Acta Mater.
116
,
332
(
2016
).
22.
T. T.
Shun
,
L. Y.
Chang
, and
M. H.
Shiu
,
Mater. Charact.
70
,
63
(
2012
).
23.
S.
Sheikh
,
U.
Klement
, and
S.
Guo
,
J. Appl. Phys.
118
,
194902
(
2015
).
24.
J. O.
Andersson
,
T.
Helander
,
L. H.
Hoglund
,
P. F.
Shi
, and
B.
Sundman
,
Calphad
26
,
273
(
2002
).
25.
See www.thermocalc.com for detailed description for the software and database TCHEA1.
26.
C.
Ng
,
S.
Guo
,
J. H.
Luan
,
S. Q.
Shi
, and
C. T.
Liu
,
Intermetallics
31
,
165
(
2012
).
27.
C.
Ng
,
S.
Guo
,
J. H.
Luan
,
Q.
Wang
,
J.
Lu
,
S. Q.
Shi
, and
C. T.
Liu
,
J. Alloys Compd.
584
,
530
(
2014
).
28.
C.
Zhang
,
F.
Zhang
,
S. L.
Chen
, and
W. S.
Cao
,
JOM
64
,
839
(
2012
).
29.
J.
He
,
H.
Wang
,
Y.
Wu
,
X.
Liu
,
H.
Mao
,
T.
Nieh
, and
Z.
Lu
,
Intermetallics
79
,
41
(
2016
).
30.
D.
Choudhuri
,
B.
Gwalani
,
S.
Gorsse
,
C.
Mikler
,
R.
Ramanujan
,
M.
Gibson
, and
R.
Banerjee
,
Scr. Mater.
127
,
186
(
2017
).
31.
G.
Bracq
,
M.
Laurent-Brocq
,
L.
Perrière
,
R.
Pirès
,
J.-M.
Joubert
, and
I.
Guillot
,
Acta Mater.
128
,
327
(
2017
).
32.
S.
Guo
,
Q.
Hu
,
C.
Ng
, and
C. T.
Liu
,
Intermetallics
41
,
96
(
2013
).
33.
34.
Y.
Zhang
,
Y. J.
Zhou
,
J. P.
Lin
,
G. L.
Chen
, and
P. K.
Liaw
,
Adv. Eng. Mater.
10
,
534
(
2008
).
35.
Z.
Wang
,
Y.
Huang
,
Y.
Yang
,
J.
Wang
, and
C. T.
Liu
,
Scr. Mater.
94
,
28
(
2015
).
36.
Y. F.
Ye
,
Q.
Wang
,
J.
Lu
,
C. T.
Liu
, and
Y.
Yang
,
Mater. Today
19
(
6
),
349
(
2016
).
37.
E. J.
Pickering
and
N. G.
Jones
,
Int. Mater. Rev.
61
,
183
(
2016
).
38.
K. G.
Pradeep
,
C. C.
Tasan
,
M. J.
Yao
,
Y.
Deng
,
H.
Springer
, and
D.
Raabe
,
Mater. Sci. Eng. A
648
,
183
(
2015
).
39.
A.
Takeuchi
and
A.
Inoue
,
Mater. Trans.
41
,
1372
(
2000
).
40.
M. S.
Lucas
,
G. B.
Wilks
,
L.
Mauger
,
J. A.
Munoz
,
O. N.
Senkov
,
E.
Michel
,
J.
Horwath
,
S. L.
Semiatin
,
M. B.
Stone
,
D. L.
Abernathy
, and
E.
Karapetrova
,
Appl. Phys. Lett.
100
,
251907
(
2012
).
41.
Y. J.
Hsu
,
W. C.
Chiang
, and
J. W.
Wu
,
Mater. Chem. Phys.
92
,
112
(
2005
).
42.
C. J.
Tong
,
Y. L.
Chen
,
S. K.
Chen
,
J. W.
Yeh
,
T. T.
Shun
,
C. H.
Tsau
,
S. J.
Lin
, and
S. Y.
Chang
,
Metall. Mater. Trans. A
36
,
881
(
2005
).
43.
T. T.
Shun
,
L. Y.
Chang
, and
M. H.
Shiu
,
Mater. Sci. Eng. A
556
,
170
(
2012
).
You do not currently have access to this content.