A concept for single-frequency microwave imaging using orbital angular momentum (OAM) carrying wave is introduced. The orthogonality of OAM waves, which is well suited for compressed sensing, enables the reconstruction of a sparse scene with limited measurements. A traveling wave circular slot antenna is demonstrated to generate the OAM carrying wave theoretically and experimentally. Using a set of illumination patterns radiated from the designed OAM antennas as the measurement modes, the echo signals versus OAM modes are acquired and the scene is reconstructed based on computational imaging methods. This microwave imaging scheme is verified by a proof-of-principle experiment at a single frequency without mechanical scanning or beam-forming technologies.

1.
A.
Moreira
,
P.
Prats-Iraola
,
M.
Younis
,
G.
Krieger
,
I.
Hajnsek
, and
K. P.
Papathanassiou
, “
A tutorial on synthetic aperture radar
,”
IEEE Geosci. Remote Sens. Mag.
1
,
6
43
(
2013
).
2.
D.
Smith
,
O.
Yurduseven
,
B.
Livingstone
, and
V.
Schejbal
, “
Microwave imaging using indirect holographic techniques
,”
IEEE Antennas Propag. Mag.
56
,
104
117
(
2014
).
3.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
4.
E. J.
Candès
 et al, “
Compressive sampling
,” in
Proceedings of The International Congress of Mathematicians
(Madrid, Spain,
2006
), Vol. 3, pp.
1433
1452
.
5.
E. J.
Candès
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
,
489
509
(
2006
).
6.
M. F.
Duarte
,
M. A.
Davenport
,
D.
Takhar
,
J. N.
Laska
,
T.
Sun
,
K. E.
Kelly
,
R. G.
Baraniuk
 et al, “
Single-pixel imaging via compressive sampling
,”
IEEE Signal Process. Mag.
25
,
83
(
2008
).
7.
W. L.
Chan
,
K.
Charan
,
D.
Takhar
,
K. F.
Kelly
,
R. G.
Baraniuk
, and
D. M.
Mittleman
, “
A single-pixel terahertz imaging system based on compressed sensing
,”
Appl. Phys. Lett.
93
,
121105
(
2008
).
8.
C. M.
Watts
,
D.
Shrekenhamer
,
J.
Montoya
,
G.
Lipworth
,
J.
Hunt
,
T.
Sleasman
,
S.
Krishna
,
D. R.
Smith
, and
W. J.
Padilla
, “
Terahertz compressive imaging with metamaterial spatial light modulators
,”
Nat. Photonics
8
,
605
609
(
2014
).
9.
J.
Hunt
,
T.
Driscoll
,
A.
Mrozack
,
G.
Lipworth
,
M.
Reynolds
,
D.
Brady
, and
D. R.
Smith
, “
Metamaterial apertures for computational imaging
,”
Science
339
,
310
313
(
2013
).
10.
O.
Yurduseven
,
M. F.
Imani
,
H.
Odabasi
,
J.
Gollub
,
G.
Lipworth
,
A.
Rose
, and
D. R.
Smith
, “
Resolution of the frequency diverse metamaterial aperture imager
,”
Prog. Electromagn. Res.
150
,
97
107
(
2015
).
11.
O.
Yurduseven
,
J.
Gollub
,
H.
Odabasi
,
M. F.
Imani
,
G.
Lipworth
,
A.
Rose
,
P.
Trofetter
, and
D. R.
Smith
, “
Comparison of different reconstruction algorithms for image reconstruction in metamaterial aperture based imaging system
,” in
2015 9th European Conference on Antennas and Propagation (EuCAP)
(
2015
), pp.
1
5
.
12.
J.
Hunt
,
J.
Gollub
,
T.
Driscoll
,
G.
Lipworth
,
A.
Mrozack
,
M. S.
Reynolds
,
D. J.
Brady
, and
D. R.
Smith
, “
Metamaterial microwave holographic imaging system
,”
J. Opt. Soc. Am. A
31
,
2109
2119
(
2014
).
13.
T.
Fromenteze
,
O.
Yurduseven
,
M. F.
Imani
,
J.
Gollub
,
C.
Decroze
,
D.
Carsenat
, and
D. R.
Smith
, “
Computational imaging using a mode-mixing cavity at microwave frequencies
,”
Appl. Phys. Lett.
106
,
194104
(
2015
).
14.
Y. B.
Li
,
L. L.
Li
,
B. B.
Xu
,
W.
Wu
,
R. Y.
Wu
,
X.
Wan
,
Q.
Cheng
, and
T. J.
Cui
, “
Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging
,”
Sci. Rep.
6
,
23731
(
2016
).
15.
L.
Allen
,
M. W.
Beijersbergen
,
R.
Spreeuw
, and
J.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
(
1992
).
16.
J.
Wang
,
J. Y.
Yang
,
I. M.
Fazal
,
N.
Ahmed
,
Y.
Yan
,
H.
Huang
,
Y.
Ren
,
Y.
Yue
,
S.
Dolinar
,
M.
Tur
, et al, “
Terabit free-space data transmission employing orbital angular momentum multiplexing
,”
Nat. Photonics
6
,
488
496
(
2012
).
17.
N.
Bozinovic
,
Y.
Yue
,
Y.
Ren
,
M.
Tur
,
P.
Kristensen
,
H.
Huang
,
A. E.
Willner
, and
S.
Ramachandran
, “
Terabit-scale orbital angular momentum mode division multiplexing in fibers
,”
Science
340
,
1545
1548
(
2013
).
18.
Y.
Yan
,
G.
Xie
,
M. P.
Lavery
,
H.
Huang
,
N.
Ahmed
,
C.
Bao
,
Y.
Ren
,
Y.
Cao
,
L.
Li
,
Z.
Zhao
, et al, “
High-capacity millimetre-wave communications with orbital angular momentum multiplexing
,”
Nat. Commun.
5
,
4876
(
2014
).
19.
B.
Thidé
,
H.
Then
,
J.
Sjöholm
,
K.
Palmer
,
J.
Bergman
,
T.
Carozzi
,
Y. N.
Istomin
,
N.
Ibragimov
, and
R.
Khamitova
, “
Utilization of photon orbital angular momentum in the low-frequency radio domain
,”
Phys. Rev. Lett.
99
,
087701
(
2007
).
20.
F.
Tamburini
,
E.
Mari
,
A.
Sponselli
,
B.
Thidé
,
A.
Bianchini
, and
F.
Romanato
, “
Encoding many channels on the same frequency through radio vorticity: First experimental test
,”
N. J. Phys.
14
,
033001
(
2012
).
21.
X.
Hui
,
S.
Zheng
,
Y.
Chen
,
Y.
Hu
,
X.
Jin
,
H.
Chi
, and
X.
Zhang
, “
Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas
,”
Sci. Rep.
5
,
10148
(
2015
).
22.
S.
Sato
,
M.
Ishigure
, and
H.
Inaba
, “
Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: Yag laser beams
,”
Electron. Lett.
27
,
1831
1832
(
1991
).
23.
T.
Kuga
,
Y.
Torii
,
N.
Shiokawa
,
T.
Hirano
,
Y.
Shimizu
, and
H.
Sasada
, “
Novel optical trap of atoms with a doughnut beam
,”
Phys. Rev. Lett.
78
,
4713
(
1997
).
24.
M.
Lavery
 et al, “
Detection of a spinning object using light's orbital angular momentum
,”
Science
341
,
537
(
2013
).
25.
L.
Torner
,
J. P.
Torres
, and
S.
Carrasco
, “
Digital spiral imaging
,”
Opt. Express
13
,
873
881
(
2005
).
26.
B.
Jack
,
J.
Leach
,
J.
Romero
,
S.
Franke-Arnold
,
M.
Ritsch-Marte
,
S.
Barnett
, and
M.
Padgett
, “
Holographic ghost imaging and the violation of a bell inequality
,”
Phys. Rev. Lett.
103
,
083602
(
2009
).
27.
D. S.
Simon
and
A. V.
Sergienko
, “
Two-photon spiral imaging with correlated orbital angular momentum states
,”
Phys. Rev. A
85
,
043825
(
2012
).
28.
N.
Uribe-Patarroyo
,
A.
Fraine
,
D. S.
Simon
,
O.
Minaeva
, and
A. V.
Sergienko
, “
Object identification using correlated orbital angular momentum states
,”
Phys. Rev. Lett.
110
,
043601
(
2013
).
29.
K.
Liu
,
Y.
Cheng
,
Z.
Yang
,
H.
Wang
,
Y.
Qin
, and
X.
Li
, “
Orbital-angular-momentum-based electromagnetic vortex imaging
,”
IEEE Antennas Wireless Propag. Lett.
14
,
711
714
(
2015
).
30.
T.
Yuan
,
H.
Wang
,
Y.
Qin
, and
Y.
Cheng
, “
Electromagnetic vortex imaging using uniform concentric circular arrays
,”
IEEE Antennas Wireless Propag. Lett.
15
,
1024
1027
(
2016
).
31.
O. S.
Magaña-Loaiza
,
M.
Mirhosseini
,
R. M.
Cross
,
S. M. H.
Rafsanjani
, and
R. W.
Boyd
, “
Hanbury brown and twiss interferometry with twisted light
,”
Sci. Adv.
2
,
e1501143
(
2016
).
32.
S.
Zheng
,
X.
Hui
,
X.
Jin
,
H.
Chi
, and
X.
Zhang
, “
Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna
,”
IEEE Trans. Antennas Propag.
63
,
1530
1536
(
2015
).
33.
S.
Zheng
,
Z.
Zhang
,
Y.
Pan
,
X.
Jin
,
H.
Chi
, and
X.
Zhang
, “
Plane spiral orbital angular momentum electromagnetic wave
,” in
2015 Asia-Pacific Microwave Conference (APMC)
(
2015
), Vol. 3, pp.
1
3
.
34.
Z.
Zhang
,
S.
Zheng
,
J.
Zheng
,
X.
Jin
,
H.
Chi
, and
X.
Zhang
, “
Plane spiral orbital angular momentum wave and its applications
,” in
2016 IEEE MTT-S International Microwave Symposium (IMS)
(IEEE,
2016
), pp.
1
4
.
35.
G.
Lipworth
,
A.
Mrozack
,
J.
Hunt
,
D. L.
Marks
,
T.
Driscoll
,
D.
Brady
, and
D. R.
Smith
, “
Metamaterial apertures for coherent computational imaging on the physical layer
,”
J. Opt. Soc. Am. A
30
,
1603
1612
(
2013
).
36.
D. J.
Brady
,
Optical Imaging and Spectroscopy
(
John Wiley & Sons
,
2009
).
37.
J.
Romberg
, “
Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming]
,”
IEEE Signal Process. Mag.
25
,
14
20
(
2008
).
38.
E. J.
Candes
and
T.
Tao
, “
Near-optimal signal recovery from random projections: Universal encoding strategies?
IEEE Trans. Inf. Theory
52
,
5406
5425
(
2006
).
39.
M.
Rudelson
and
R.
Vershynin
, “
On sparse reconstruction from Fourier and Gaussian measurements
,”
Commun. Pure Appl. Math.
61
,
1025
1045
(
2008
).
40.
Z.
Zhang
,
S.
Zheng
,
X.
Jin
,
H.
Chi
, and
X.
Zhang
, “
Generation of plane spiral OAM waves using traveling-wave circular slot antenna
,”
IEEE Antennas Wireless Propag. Lett.
16
,
8
11
(
2016
).
41.
Y.
Chen
,
S.
Zheng
,
H.
Chi
,
X.
Jin
, and
X.
Zhang
, “
Half-mode substrate integrated waveguide antenna for generating multiple orbital angular momentum modes
,”
Electron. Lett.
52
,
684
686
(
2016
).
42.
E.
Berglind
and
G.
Björk
, “
Humblet's decomposition of the electromagnetic angular moment in metallic waveguides
,”
IEEE Trans. Microwave Theory Tech.
62
,
779
788
(
2014
).
43.
C.
Li
,
W.
Yin
, and
Y.
Zhang
, “
Users guide for TVAL3: TV minimization by augmented Lagrangian and alternating direction algorithms
,”
CAAM Rep.
20
,
46
47
(
2009
).
44.
J. M.
Bioucas-Dias
and
M. A.
Figueiredo
, “
A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration
,”
IEEE Trans. Image Process.
16
,
2992
3004
(
2007
).
45.
J. A.
Tropp
and
A. C.
Gilbert
, “
Signal recovery from random measurements via orthogonal matching pursuit
,”
IEEE Trans. Inf. Theory
53
,
4655
4666
(
2007
).
You do not currently have access to this content.