As a new transduction technology, dielectric elastomer generators (DEGs) are capable of converting mechanical energy from diverse sources into electrical energy. However, their energy harvesting performance is strongly affected by the material viscoelasticity. Based on the finite-deformation viscoelasticity theory and the nonlinear coupled field theory for dielectric elastomers, this work presents a theoretical framework to model the performance of DEGs. Motivated by the recent experiments of DEGs with a triangular harvesting scheme, we propose a method to optimize the harvesting cycle, which could significantly improve the conversion efficiency of viscoelastic DEGs. From our simulation results, choosing a higher voltage power source appears to be an effective way to improve the performance of DEGs. In addition, optimizing the period of the discharging process of DEG can markedly increase its efficiency. Also, we have uncovered that the triangular harvesting scheme for DEGs, which is expected to harvest energy close to the maximum achievable energy, could be actually realized by choosing dielectric elastomers with a higher fraction of time-independent polymer networks. The theoretical framework and simulation results presented in this work are expected to benefit the optimal design of DEGs for different applications.

1.
F.
Carpi
,
D. D.
Rossi
,
R.
Kornbluh
,
R.
Pelrine
, and
P. S.
Larsen
,
Dielectric Elasotmers as Electromechanical Transducers
(
Elsevier
,
Amsterdam
,
2008
).
2.
R. D.
Kornbluh
,
R.
Pelrine
,
H.
Prahlad
,
A.
Wong-Foy
,
B.
McCoy
,
B.
,
S.
Kim
,
J.
Eckerle
, and
T.
Low
,
MRS Bull.
37
,
246
253
(
2012
).
3.
S.
Chiba
,
M.
Waki
,
R.
Kornbluh
, and
R.
Pelrine
,
Smart Mater. Struct.
20
,
124006
(
2011
).
4.
P.
Jean
,
A.
Wattez
,
G.
Ardoise
,
C.
Melis
,
R.
Van Kessel
,
A.
Fourmon
,
E.
Barrabino
,
J.
Heemskerk
, and
J. P.
Queau
,
Proc. SPIE
8340
,
83400C
(
2012
).
5.
C.
Jean-Mistral
,
S.
Basrour
, and
J.
Chaillout
,
Proc. SPIE.
6927
,
692716
(
2008
).
6.
C.
Jean-Mistral
,
T.
Vu Cong
, and
A.
Sylvestre
,
Appl. Phys. Lett.
101
,
162901
(
2012
).
7.
R.
Pelrine
,
R. D.
Kornbluh
,
J.
Eckerle
,
P.
Jeuck
,
S.
Oh
,
Q.
Pei
, and
S.
Stanford
,
Proc. SPIE.
4329
,
148
156
(
2001
).
8.
T.
McKay
,
B.
O'Brien
,
E.
Calius
, and
I.
Anderson
,
Appl. Phys. Lett.
97
,
062911
(
2010
).
9.
T. G.
McKay
,
B. M.
O'Brien
,
E. P.
Calius
, and
I. A.
Anderson
,
Smart Mater. Struct.
19
,
055025
(
2010
).
10.
Y.
Liu
,
L.
Liu
,
Z.
Zhang
,
Y.
Jiao
,
S.
Sun
, and
J.
Leng
,
Eur. Phys. Lett.
90
,
36004
(
2010
).
11.
X.
Lv
,
L.
Liu
,
Y.
Liu
, and
J.
Leng
,
Smart Mater. Struct.
24
,
115036
(
2015
).
12.
J.
Huang
,
S.
Shian
,
Z.
Suo
, and
D. R.
Clarke
,
Adv. Funct. Mater.
23
,
5056
5061
(
2013
).
13.
S.
Shian
,
J.
Huang
,
S.
Zhu
, and
D. R.
Clarke
,
Adv. Mater.
26
,
6617
6621
(
2014
).
14.
S. J. A.
Koh
,
C.
Keplinger
,
T.
Li
,
S.
Bauer
, and
Z.
Suo
,
IEEE-ASME Trans. Mech.
16
,
33
41
(
2011
).
15.
Z.
Suo
,
X.
Zhao
, and
W. H.
Greene
,
J. Mech. Phys. Solids
56
,
467
486
(
2008
).
16.
S.
Reese
and
S.
Govindjee
,
Int. J. Solids Struct.
35
,
3455
3482
(
1998
).
17.
W.
Hong
,
J. Mech. Phys. Solids
59
,
637
650
(
2011
).
18.
T.
Li
,
S.
Qu
, and
W.
Yang
,
J. Appl. Phys.
112
,
034119
(
2012
).
19.
C. C.
Foo
,
S. J. A.
Koh
,
C.
Keplinger
,
R.
Kaltseis
,
S.
Bauer
, and
Z.
Suo
,
J. Appl. Phys.
111
,
094107
(
2012
).
20.
J.
Zhou
,
L.
Jiang
, and
R. E.
Khayat
,
Soft Matter
11
,
2983
2992
(
2015
).
21.
J.
Zhu
,
M.
Kollosche
,
T.
Lu
,
G.
Kofod
, and
Z.
Suo
,
Soft Matter
8
,
8840
8846
(
2012
).
22.
T.
Li
,
Z.
Zou
,
G.
Mao
, and
S.
Qu
,
J. Appl. Mech.
81
,
041019
(
2013
).
23.
J.
Zhang
,
H.
Chen
,
J.
Sheng
,
L.
Liu
,
Y.
Wang
, and
S.
Jia
,
Appl. Phys. A
116
,
59
67
(
2014
).
24.
M. C.
Boyce
and
E. M.
Arruda
,
Rubber Chem. Technol.
73
,
504
523
(
2000
).
25.
A. N.
Gent
,
Rubber Chem. Technol.
69
,
59
61
(
1996
).
26.
J. S.
Bergstrom
and
M. C.
Boyce
,
J. Mech. Phys. Solids
46
,
931
954
(
1998
).
27.
L.
Liu
,
W.
Sun
,
J.
Sheng
,
L.
Chang
,
D.
Li
, and
H.
Chen
,
Eur. Phys. Lett.
112
,
27006
(
2015
).
28.
R.
Xiao
,
Eur. Phys. Lett.
114
,
16002
(
2016
).
29.
J.
Zhou
,
L.
Jiang
, and
R.
Khayat
,
Eur. Phys. Lett.
115
,
27003
(
2016
).
30.
T.
Lu
,
Z.
Shi
,
Z.
Chen
,
H.
Huang
, and
T. J.
Wang
,
Appl. Phys. Lett.
107
,
152901
(
2015
).
31.
L.
Di Lillo
,
A.
Schmidt
,
A.
Bergamini
,
P.
Ermanni
, and
E.
Mazza
,
Proc. SPIE
7976
,
79763b
(
2011
).
32.
G.
Kofod
,
P.
Sommer-Larsen
,
R.
Kornbluh
, and
R.
Pelrine
,
J. Intell. Mater. Syst. Struct.
14
,
787
793
(
2003
).
33.
A.
Trols
,
A.
Kogler
,
R.
Baumgartner
,
R.
Kaltseis
,
C.
Keplinger
,
R.
Schwodiauer
,
I.
Graz
, and
S.
Bauer
,
Smart Mater. Struct.
22
,
104012
(
2013
).
34.
M VHB™ tape specialty tapes technical data (
2014
).
35.
Y.
Liu
,
L.
Liu
,
Z.
Zhang
, and
J.
Leng
,
Smart Mater. Struct.
18
,
095024
(
2009
).
36.
L.
Liu
,
Y.
Liu
, and
J.
Leng
,
J. Appl. Phys.
112
,
033519
(
2012
).
37.
J.
Huang
,
S.
Shian
,
R. M.
Diebold
,
Z.
Suo
, and
D. R.
Clarke
,
Appl. Phys. Lett.
101
,
122905
(
2012
).
You do not currently have access to this content.