Oxide dispersion strengthened (ODS) steels are promising structural materials for the next generation nuclear reactors, as well as fusion facilities. The detailed understanding of the mechanisms involved in the precipitation of nano-oxides during ODS steel production would strongly contribute to the improvement of the mechanical properties and the optimization of manufacturing of ODS steels, with a potentially strong economic impact for their industrialization. A useful tool for the experimental study of nano-oxide precipitation is ion implantation, a technique that is widely used to synthesize precipitate nanostructures in well-controlled conditions. Earlier, we have demonstrated the feasibility of synthesizing aluminum-oxide particles in the high purity Fe-10Cr alloy by consecutive implantation with Al and O ions at room temperature. This paper describes the effects of high-temperature annealing after the ion implantation stage on the development of the aluminum based oxide nanoparticle system. Using transmission electron microscopy and atom probe tomography experiments, we demonstrate that post-implantation heat treatment induces the growth of the nano-sized oxides in the implanted region and nucleation of new oxide precipitates behind the implantation zone as a result of the diffusion driven broadening of implant profiles. A tentative scenario for the development of metal-oxide nano-particles at both ion implantation and heat treatment stages is suggested based on the experimental observations.

1.
S.
Ukai
, “
Oxide dispersion strengthened steels
,” in
Comprehensive Nuclear Materials
, edited by
R. J. M.
Konings
(
Elsevier
,
Amsterdam
,
2012
), Vol. 4, p.
241
.
2.
E. A.
Marquis
,
Appl. Phys. Lett.
93
,
181904
(
2008
).
3.
D.
Murali
,
B. K.
Panigrahi
,
M. C.
Valsakumar
,
S.
Chandra
, and
C. S.
Sundar
,
J. Nucl. Mater.
403
,
113
(
2010
).
4.
C. L.
Fu
,
M.
Krčmar
,
G. S.
Painter
, and
X.-Q.
Chen
,
Phys. Rev. Lett.
99
,
225502
(
2007
).
5.
J.
Xu
,
C. T.
Liu
,
K.
Miller
, and
H.
Chen
,
Phys. Rev. B
79
,
020204
(
2009
).
6.
C.
Zheng
,
A.
Gentils
,
J.
Ribis
,
O.
Kaïtasov
,
V. A.
Borodin
,
M.
Descoins
, and
D.
Mangelinck
,
Philos. Mag.
94
,
2937
(
2014
).
7.
C.
Zheng
,
A.
Gentils
,
J.
Ribis
,
V. A.
Borodin
,
O.
Kaïtasov
, and
F.
Garrido
,
Nucl. Instrum. Methods Phys. Res., Sect. B
365
,
319
(
2015
).
8.
D.
Sakuma
,
S.
Yamashita
,
K.
Oka
,
S.
Ohnuki
,
L. E.
Rehn
, and
E.
Wakai
,
J. Nucl. Mater.
329
,
392
(
2004
).
9.
J.
Chao
,
Mater. Sci. Eng., A
242
,
248
(
1998
).
10.
M. K.
Miller
,
D. T.
Hoelzer
,
E. A.
Kenik
, and
K. F.
Russell
,
J. Nucl. Mater.
329
,
338
(
2004
).
11.
D.
Sporer
and
G.
Korb
,
Met. Powder Rep.
47
(
2
),
62
(
1992
).
12.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon Press
,
New York
,
1996
).
13.
N.
Juslin
,
K.
Nordlund
,
J.
Wallenius
, and
L.
Malerba
,
Nucl. Instrum. Methods Phys. Res., Sect. B
255
,
75
(
2007
).
14.
C.
Zheng
,
A.
Gentils
,
J.
Ribis
,
V. A.
Borodin
,
L.
Delauche
, and
B.
Arnal
, “
Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
(in press).
15.
B.
Gault
,
D.
Haley
,
F.
de Geuser
,
M. P.
Moody
,
E. A.
Marquis
,
D. J.
Larson
, and
B. P.
Geiser
,
Ultramicroscopy
111
,
448
(
2011
).
16.
D.
Mangelinck
,
F.
Panciera
,
K.
Hoummada
,
M.
El Kousseifi
,
C.
Perrin
,
M.
Descoins
, and
A.
Portavoce
,
Microelectron. Eng.
120
,
19
(
2014
).
17.
D.
Vaumousse
,
A.
Cerezo
, and
P. J.
Warren
,
Ultramicroscopy
95
,
215
(
2003
).
18.
E. A.
Marquis
and
J. M.
Hyde
,
Mater. Sci. Eng., R
69
,
37
(
2010
).
19.
C. A.
Williams
,
E. A.
Marquis
,
A.
Cerezo
, and
G. D. W.
Smith
,
J. Nucl. Mater.
400
,
37
(
2010
).
20.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy
(
Plenum Press
,
New York
,
1996
), p.
678
.
21.
T.
Malis
,
J. Electron Microsc. Tech.
8
,
193
(
1988
).
22.
F.
Hofer
,
W.
Grogger
,
G.
Kothleitner
, and
P.
Warbichler
,
Ultramicroscopy
67
,
83
(
1997
).
23.
B.
Gault
,
M. P.
Moody
,
J. M.
Cairney
, and
S. P.
Ringer
,
Atom Probe Microscopy
, Springer Series in Materials Science Vol. 160 (
Springer
,
New York
,
2012
).
24.
E. A.
Marquis
and
F.
Vurpillot
,
Microsc. Microanal.
14
,
561
(
2008
).
25.
M.
Klimiankou
,
R.
Lindau
, and
A.
Möslang
,
J. Nucl. Mater.
329
,
347
(
2004
).
26.
A.
Ramar
,
N.
Baluc
, and
R.
Schäublin
,
J. Nucl. Mater.
386
,
515
(
2009
).
27.
J.
Ribis
and
Y.
de Carlan
,
Acta Mater.
60
,
238
(
2012
).
28.
See http://www.jems-saas.ch/ for information on JEMS software;
see also
P. A.
Stadelmann
,
Ultramiscroscopy
21
,
131
(
1987
).
29.
E. J. W.
Verway
,
Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie Abteilung A
91
,
65
(
1935
).
30.
X. S.
Du
,
S.
Hak
,
T.
Hibma
,
O. C.
Rogojanu
, and
B.
Struth
,
J. Cryst. Growth
293
,
228
(
2006
).
31.
A.
Khatibi
,
J.
Palisaitis
,
C.
Höglund
,
A.
Eriksson
,
P. O. Å.
Persson
,
J.
Jensen
,
J.
Birch
,
P.
Eklund
, and
L.
Hultman
,
Thin Solid Films
519
,
2426
(
2011
).
32.
B.
Alling
,
A.
Khatibi
,
S. I.
Simak
,
P.
Eklund
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
31
,
030602
(
2013
).
33.
A. F.
Holleman
and
E.
Wiberg
,
Inorganic Chemistry
(
Academic Press
,
San Diego
,
2001
).
34.
A.
Khatibi
,
J.
Lu
,
J.
Jensen
,
P.
Eklund
, and
L.
Hultman
,
Surf. Coat. Technol.
206
,
3216
(
2012
).
35.
A.
Khatibi
,
A.
Genvad
,
E.
Göthelid
,
J.
Jensen
,
P.
Eklund
, and
L.
Hultman
,
Acta Mater.
61
,
4811
(
2013
).
36.
H.
Najafi
,
A.
Karimi
,
P.
Dessarzin
, and
M.
Morstein
,
Surf. Coat. Technol.
214
,
46
(
2013
).
37.
C. M.
Koller
,
N.
Koutná
,
J.
Ramm
,
S.
Kolozsvári
,
J.
Paulitsch
,
D.
Holec
, and
P. H.
Mayrhofer
,
AIP Adv.
6
,
025002
(
2016
).
38.
N. B.
Pilling
and
R. E.
Bedworth
,
J. Inst. Met.
29
,
529
(
1923
).
39.
N. W.
Ageew
and
O. J.
Vher
,
J. Inst. Met.
44
,
83
(
1930
).
40.
K.
Nishida
,
T.
Yamamoto
, and
T.
Nagata
,
Trans. JIM
12
,
310
(
1971
).
41.
J.
Hirvonen
and
J.
Räisänen
,
J. Appl. Phys.
53
,
3314
(
1982
).
42.
H.
Oikawa
,
Tetsu-to-Hagane
68
,
1489
(
1982
).
43.
A. B.
Campbell
,
B. D.
Sartwell
, and
P. B.
Needham
, Jr.
,
J. Appl. Phys.
51
,
283
(
1980
).
44.
R.
Barlow
and
P. J.
Grundy
,
J. Mater. Sci.
4
,
797
(
1969
).
45.
J.
Takada
,
S.
Yamamoto
,
S.
Kikuchi
, and
M.
Adachi
,
Oxid. Met.
25
,
93
(
1986
).
46.
U. R.
Kattner
,
Binary Alloy Phase Diagrams
, 2nd ed., edited by
T. B.
Massalski
(
American Society for Metals
,
Material Park, OH
,
1990
), Vol. 1, p.
147
.
47.
M.
Nastar
and
F.
Soisson
, “
Radiation induced segregation
,” in
Comprehensive Nuclear Materials
, edited by
R. J. M.
Konings
(
Elsevier
,
Amsterdam
,
2012
), Vol. 1, p.
471
.
48.
R. E.
Clausing
,
L.
Heatherly
,
R. G.
Faulkner
,
A. F.
Rowcliffe
, and
K.
Farrell
,
J. Nucl. Mater.
141
,
978
(
1986
).
49.
Z.
Jiao
and
G. S.
Was
,
Acta Mater.
59
,
4467
(
2011
).
50.
G. S.
Was
,
J. P.
Wharry
,
B.
Frisbie
,
B. D.
Wirth
,
D.
Morgan
,
J. D.
Tucker
, and
T. R.
Allen
,
J. Nucl. Mater.
411
,
41
(
2011
).
51.
H.
Amara
,
C. C.
Fu
,
F.
Soisson
, and
P.
Maugis
,
Phys. Rev. B
81
,
174101
(
2010
).
52.
R.
Besson
,
A.
Legris
,
D.
Connetable
, and
P.
Maugis
,
Phys. Rev. B
78
,
014204
(
2008
).
You do not currently have access to this content.