Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

1.
M.
Aiempanakit
,
A.
Aijaz
,
D.
Lundin
,
U.
Helmersson
, and
T.
Kubart
, “
Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides
,”
J. Appl. Phys.
113
(
13
),
133302
(
2013
).
2.
A.
Anders
, “
Localized heating of electrons in ionization zones: Going beyond the Penning–Thornton paradigm in magnetron sputtering
,”
Appl. Phys. Lett.
105
(
24
),
244104
(
2014
).
3.
A. T.
de Los
,
V.
Layes
,
Y.
Aranda Gonzalvo
,
V.
Schulz-von der Gathen
,
A.
Hecimovic
, and
J.
Winter
, “
Current–voltage characteristics and fast imaging of HPPMS plasmas: Transition from self-organized to homogeneous plasma regimes
,”
J. Phys. D: Appl. Phys.
46
(
33
),
335201
(
2013
).
4.
D.
Benzeggouta
,
M. C.
Hugon
,
J.
Bretagne
, and
M.
Ganciu
, “
Study of a HPPMS discharge in Ar/O2 mixture: I. Discharge characteristics with Ru cathode
,”
Plasma Sources Sci. Technol.
18
(
4
),
045025
(
2009
).
5.
J.
Bohlmark
,
U.
Helmersson
,
M.
Van Zeeland
,
I.
Axnäs
,
J.
Alami
, and
N.
Brenning
, “
Measurement of the magnetic field change in a pulsed high current magnetron discharge
,”
Plasma Sources Sci. Technol.
13
(
4
),
654
661
(
2004
).
6.
W.
Breilmann
,
C.
Maszl
,
A.
Hecimovic
, and
A.
von Keudell
, “
Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium
,”
J. Phys. D: Appl. Phys.
50
,
135203
(
2017
).
7.
N.
Brenning
,
J. T.
Gudmundsson
,
D.
Lundin
,
T.
Minea
,
M. A.
Raadu
, and
U.
Helmersson
, “
The role of ohmic heating in DC magnetron sputtering
,”
Plasma Sources Sci. Technol.
25
(
6
),
065024
(
2016
).
8.
N.
Brenning
,
R. L.
Merlino
,
D.
Lundin
,
M. A.
Raadu
, and
U.
Helmersson
, “
Faster-than-Bohm cross-B electron transport in strongly pulsed plasmas
,”
Phys. Rev. Lett.
103
(
22
),
225003
(
2009
).
9.
C.
Corbella
,
S.
Grosse-Kreul
,
O.
Kreiter
,
T.
de los Arcos
,
J.
Benedikt
, and
A.
von Keudell
, “
Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces
,”
Rev. Sci. Instrum.
84
(
10
),
103303
(
2013
).
10.
C.
Corbella
,
A.
Marcak
,
T.
de los Arcos
, and
A.
von Keudell
, “
Revising secondary electron yields of ion-sputtered metal oxides
,”
J. Phys. D: Appl. Phys.
49
(
16
),
16LT01
(
2016
).
11.
D.
Depla
,
S.
Heirwegh
,
S.
Mahieu
,
J.
Haemers
, and
R.
De Gryse
, “
Understanding the discharge voltage behavior during reactive sputtering of oxides
,”
J. Appl. Phys.
101
(
1
),
013301
(
2007
).
12.
D.
Depla
,
X. Y.
Li
,
S.
Mahieu
, and
R.
De Gryse
, “
Determination of the effective electron emission yields of compound materials
,”
J. Phys. D: Appl. Phys.
41
(
20
),
202003
(
2008
).
13.
D.
Depla
,
G.
Buyle
,
J.
Haemers
, and
R.
De Gryse
, “
Discharge voltage measurements during magnetron sputtering
,”
Surf. Coat. Technol.
200
(
14–15
),
4329
4338
(
2006
).
14.
W.
Ensinger
and
M.
Kiuchi
, “
The formation of chromium/nitrogen phases by nitrogen ion implantation during chromium deposition as a function of ion-to-atom arrival ratio
,”
Surf. Coat. Technol.
94–95
,
433
436
(
1997
).
15.
R.
Franz
,
C.
Clavero
,
J.
Kolbeck
, and
A.
Anders
, “
Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth
,”
Plasma Sources Sci. Technol.
25
(
1
),
015022
(
2016
).
16.
G.
Greczynski
,
J.
Jensen
, and
L.
Hultman
, “
CrNx films prepared by dc magnetron sputtering and high-power pulsed magnetron sputtering: A comparative study
,”
IEEE Trans. Plasma Sci.
38
(
11
),
3046
3056
(
2010
).
17.
G.
Greczynski
,
J.
Lu
,
M. P.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
, “
Role of Tin+ and Aln+ ion irradiation (n = 1, 2) during Ti1-Xalxn alloy film growth in a hybrid HIPIMS/magnetron mode
,”
Surf. Coat. Technol.
206
(
19–20
),
4202
4211
(
2012
).
18.
J. T.
Gudmundsson
, “
On reactive high power impulse magnetron sputtering
,”
Plasma Phys. Controlled Fusion
58
(
1
),
014002
(
2016
).
19.
J. T.
Gudmundsson
,
D.
Lundin
,
N.
Brenning
,
M. A.
Raadu
,
C.
Huo
, and
T. M.
Minea
, “
An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge
,”
Plasma Sources Sci. Technol.
25
(
6
),
065004
(
2016
).
20.
A.
Hecimovic
, “
Anomalous cross-B field transport and spokes in HIPIMS plasma
,”
J. Phys. D: Appl. Phys.
49
(
18
),
18LT01
(
2016
).
21.
A.
Hecimovic
,
M.
Böke
, and
J.
Winter
, “
The characteristic shape of emission profiles of plasma spokes in HIPIMS: The role of secondary electrons
,”
J. Phys. D: Appl. Phys.
47
(
10
),
102003
(
2014
).
22.
A.
Hecimovic
,
C.
Maszl
,
V.
Schulz-von der Gathen
,
M.
Böke
, and
A.
von Keudell
, “
Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium
,”
Plasma Sources Sci. Technol.
25
(
3
),
035001
(
2016
).
23.
A.
Hecimovic
,
V.
Schulz-von der Gathen
,
M.
Böke
,
A.
von Keudell
, and
J.
Winter
, “
Spoke transitions in HIPIMS discharges
,”
Plasma Sources Sci. Technol.
24
(
4
),
045005
(
2015
).
24.
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
, “
On sheath energization and ohmic heating in sputtering magnetrons
,”
Plasma Sources Sci. Technol.
22
(
4
),
045005
(
2013
).
25.
E.
Lewin
,
D.
Loch
,
A.
Montagne
,
A. P.
Ehiasarian
, and
J.
Patscheider
, “
Comparison of Al–Si–N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering
,”
Surf. Coat. Technol.
232
,
680
689
(
2013
).
26.
M. A.
Lewis
, “
Measurements of secondary electron emission in reactive sputtering of aluminum and titanium nitride
,”
J. Vac. Sci. Technol. A
7
(
3
),
1019
(
1989
).
27.
D.
Lundin
,
P.
Larsson
,
E.
Wallin
,
M.
Lattemann
,
N.
Brenning
, and
U.
Helmersson
, “
Cross-field ion transport during high power impulse magnetron sputtering
,”
Plasma Sources Sci. Technol.
17
(
3
),
035021
(
2008
).
28.
F.
Magnus
,
T. K.
Tryggvason
,
S.
Olafsson
, and
J. T.
Gudmundsson
, “
Current–voltage–time characteristics of the reactive Ar/O2 high power impulse magnetron sputtering discharge
,”
J. Vac. Sci. Technol. A
30
(
5
),
050601
(
2012
).
29.
A.
Marcak
,
C.
Corbella
,
T.
de los Arcos
, and
A.
von Keudell
, “
Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor
,”
Rev. Sci. Instrum.
86
(
10
),
106102
(
2015
).
30.
M.
Panjan
,
R.
Franz
, and
A.
Anders
, “
Asymmetric particle fluxes from drifting ionization zones in sputtering magnetrons
,”
Plasma Sources Sci. Technol.
23
(
2
),
025007
(
2014
).
31.
M.
Panjan
,
S.
Loquai
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Non-uniform plasma distribution in DC magnetron sputtering: Origin, shape and structuring of spokes
,”
Plasma Sources Sci. Technol.
24
(
6
),
065010
(
2015
).
32.
Yu
Ralchenko
,
A. E.
Kramida
, and
J.
Reader
, NIST Atomic Spectra Database (version 3.1.5).
33.
S.
Berg
and
T.
Nyberg
, “
Fundamental understanding and modeling of reactive sputtering processes
,”
Thin Solid Films
476
(
2
),
215
230
(
2005
).
34.
P.
Simon
and
A.
Bogaerts
, “
Vibrational level population of nitrogen impurities in low-pressure argon glow discharges
,”
J. Anal. At. Spectr.
26
(
4
),
804
810
(
2011
).
35.
Y.
Yang
,
K.
Tanaka
,
J.
Liu
, and
A.
Anders
, “
Ion energies in high power impulse magnetron sputtering with and without localized ionization zones
,”
Appl. Phys. Lett.
106
(
12
),
124102
(
2015
).
36.
G. Yu.
Yushkov
and
A.
Anders
, “
Origin of the delayed current onset in high-power impulse magnetron sputtering
,”
IEEE Trans. Plasma Sci.
38
(
11
),
3028
3034
(
2010
).
37.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter (2010)
,”
Nucl. Instrum. Methods Phys. Res. Sect., B
268
(
11–12
),
1818
1823
(
2010
).
You do not currently have access to this content.