A reactive high-power impulse magnetron sputtering (HiPIMS) process using a titanium target in a mixture of Ar/O2 has been investigated for different modes of operation including pure argon, metallic, transition, and compound mode. The trends and changes in the plasma density ne and the effective electron temperature Teff, have been measured by the time-resolved Langmuir probe technique. The same experimental process conditions have also been studied using a recently developed reactive ionization region model (R-IRM), making it possible to compare the acquired experimental results with the model results. It was found that trends in the plasma density and mean electron energy as measured by the Langmuir probe are in good agreement with the results obtained from the R-IRM model for different pulse discharge current densities. The effective electron temperature generally increases with an increasing oxygen flow rate. It is likely due to a reduction of sputtered Ti, due to compound formation on the target, which forces the discharge to increase the electron energy to increase the ionization rate of the process gas (Ar/O2) to maintain a high HiPIMS discharge current. Small variations in the plasma density were detected between the middle part of the plasma pulse as compared to the end of the plasma pulse, when transitioning from the metal mode to the poisoned mode. It is found that the time-evolution of the electron density is rather well correlated with the discharge current waveform. On the other hand, the mean electron energy did not change significantly between the middle and the end of the plasma pulse. For the lower pulse discharge current, both the model and experimental data have shown a slight increase in the plasma density with increasing O2 mass flow rate.

1.
E.
Wallin
and
U.
Helmersson
,
Thin Solid Films
516
,
6398
(
2008
).
2.
M.
Aiempanakit
,
T.
Kubart
,
P.
Larsson
,
K.
Sarakinos
,
J.
Jensen
, and
U.
Helmersson
,
Thin Solid Films
519
,
7779
(
2011
).
3.
T.
Shimizu
,
M.
Villamayor
,
D.
Lundin
, and
U.
Helmersson
,
J. Phys. D: Appl. Phys.
49
,
065202
(
2016
).
4.
J. T.
Gudmundsson
,
D.
Lundin
,
N.
Brenning
,
M. A.
Raadu
,
C.
Huo
, and
T. M.
Minea
,
Plasma Sources Sci. Technol.
25
,
65004
(
2016
).
5.
D.
Lundin
,
M.
Čada
, and
Z.
Hubička
,
Plasma Sources Sci. Technol.
24
,
035018
(
2015
).
6.
J. T.
Gudmundsson
,
J.
Alami
, and
U.
Helmersson
,
Appl. Phys. Lett.
78
,
3427
(
2001
).
7.
J. T.
Gudmundsson
,
J.
Alami
, and
U.
Helmersson
,
Surf. Coat. Technol.
161
,
249
(
2002
).
8.
J.
Bohlmark
,
J. T.
Gudmundsson
,
J.
Alami
,
M.
Latteman
, and
U.
Helmersson
,
IEEE Trans. Plasma Sci.
33
,
346
(
2005
).
9.
J. T.
Gudmundsson
,
P.
Sigurjonsson
,
P.
Larsson
,
D.
Lundin
, and
U.
Helmersson
,
J. Appl. Phys.
105
,
123302
(
2009
).
10.
A. D.
Pajdarová
,
J.
Vlček
,
P.
Kudláček
, and
J.
Lukáš
,
Plasma Sources Sci. Technol.
18
,
025008
(
2009
).
11.
P.
Poolcharuansin
and
J. W.
Bradley
,
Plasma Sources Sci. Technol.
19
,
025010
(
2010
).
12.
A.
Vetushka
and
A. P.
Ehiasarian
,
J. Phys. D: Appl. Phys.
41
,
015204
(
2008
).
13.
P.
Poolcharuansin
,
B.
Liebig
, and
J.
Bradley
,
IEEE Trans. Plasma Sci.
38
,
3007
(
2010
).
14.
P.
Vasina
,
M.
Mesko
,
J. C.
Imbert
,
M.
Ganciu
,
C.
Boisse-Laporte
 et al.,
Plasma Sources Sci. Technol.
16
,
501
(
2007
).
15.
A.
Anders
and
G. Y.
Yushkov
,
J. Appl. Phys.
105
,
073301
(
2009
).
16.
V.
Stranak
,
S.
Drache
,
R.
Bogdanowicz
,
H.
Wulff
,
A.-P.
Herrendorf
,
Z.
Hubicka
,
M.
Cada
,
M.
Tichy
, and
R.
Hippler
,
Surf. Coat. Technol.
206
,
2801
(
2012
).
17.
M.
Ganciu
,
S.
Konstantinidis
,
Y.
Paint
,
J. P.
Dauchot
,
M.
Hecq
,
L.
de Poucques
,
P.
Vašina
,
M.
Meško
,
J. C.
Imbert
,
J.
Bretagne
, and
M.
Touzeau
,
J. Optoelectron. Adv. Mater.
7
(
5
),
2481
2484
(
2005
).
18.
V.
Stranak
,
A.-P.
Herrendorf
,
S.
Drache
,
M.
Cada
,
Z.
Hubicka
,
R.
Bogdanowicz
,
M.
Tichy
, and
R.
Hippler
,
J. Appl. Phys.
112
,
093305
(
2012
).
19.
S.
Drache
,
V.
Stranak
,
A.-P.
Herrendorf
,
M.
Cada
,
Z.
Hubicka
,
M.
Tichy
, and
R.
Hippler
,
Vacuum
90
,
176
(
2013
).
20.
M.
Čada
,
Z.
Hubička
,
P.
Adámek
,
J.
Klusoň
, and
L.
Jastrabík
,
Surf. Coat. Technol.
205
,
S317
(
2011
).
21.
F.
Magnus
,
T. K.
Tryggvason
,
S.
Olafsson
, and
J. T.
Gudmundsson
,
J. Vac. Sci. Technol., A
30
,
50601
(
2012
).
22.
M. A.
Raadu
,
I.
Axnäs
,
J. T.
Gudmundsson
,
C.
Huo
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
20
,
65007
(
2011
).
23.
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
22
,
45005
(
2013
).
24.
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
23
,
25017
(
2014
).
25.
G. D.
Stancu
,
N.
Brenning
,
C.
Vitelaru
,
D.
Lundin
, and
T.
Minea
,
Plasma Sources Sci. Technol.
24
,
45011
(
2015
).
26.
D.
Lundin
,
J. T.
Gudmundsson
,
N.
Brenning
,
M. A.
Raadu
, and
T.
Minea
, “
A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model
J. Appl. Phys.
(to be published).
27.
P.
Adámek
, Ph.D. thesis,
Faculty of Mathematics and Physics
, Charles University in Prague,
1999
.
28.
P.
Kudrna
, Ph.D. thesis,
Faculty of Mathematics and Physics
, Charles University in Prague,
1997
.
29.
S.
Pfau
and
M.
Tichy
, in
Low Temperature Plasmas
, edited by
R.
Hippler
 et al. (
Wiley-VCH
,
Berlin
,
2007
), p.
207
.
30.
D.
Lundin
,
M.
Čada
, and
Z.
Hubička
,
J. Vac. Sci. Technol., A
34
,
41305
(
2016
).
31.
M.
Aiempanakit
,
A.
Aijaz
,
D.
Lundin
,
U.
Helmersson
, and
T.
Kubart
,
J. Appl. Phys.
113
,
133302
(
2013
).
32.
P.
Sigurjonsson
, M.Sc. thesis,
Faculty of Engineering
, University of Iceland, Reykjavik,
2008
.
33.
J. T.
Gudmundsson
and
E. G.
Thorsteinsson
,
Plasma Sources Sci. Technol.
16
,
399
(
2007
).
You do not currently have access to this content.