Titanium and aluminum targets have been reactively sputtered in Ar +O2 or Ar +N2 gas mixtures in order to systematically investigate the effect of reduced hysteresis in reactive high power impulse magnetron sputtering (HiPIMS) as compared to other sputtering techniques utilizing low discharge target power density (e.g., direct current or pulsed direct current mid-frequency magnetron sputtering) operated at the same average discharge power. We found that the negative slope of the flow rate of the reactive gas gettered by the sputtered target material as a function of the reactive gas partial pressure is clearly lower in the case of HiPIMS. This results in a lower critical pumping speed, which implies a reduced hysteresis. We argue that the most important effect explaining the observed behavior is covering of the reacted areas of the target by the returning ionized metal, effectively lowering the target coverage at a given partial pressure. This explanation is supported by a calculation using an analytical model of reactive HiPIMS with time and space averaging (developed by us).

1.
K.
Sarakinos
,
J.
Alami
, and
S.
Konstantinidis
,
Surf. Coat. Technol.
204
,
1661
(
2010
).
2.
A.
Anders
,
Surf. Coat. Technol.
205
,
S1
(
2011
).
3.
D.
Lundin
and
K.
Sarakinos
,
J. Mater. Res.
27
,
780
(
2012
).
4.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
,
J. Vac. Sci. Technol., A
30
,
30801
(
2012
).
5.
M.
Lattemann
,
U.
Helmersson
, and
J. E.
Greene
,
Thin Solid Films
518
,
5978
(
2010
).
6.
G.
Greczynski
,
J.
Jensen
, and
L.
Hultman
,
IEEE Trans. Plasma Sci.
38
,
3046
(
2010
).
7.
A. P.
Ehiasarian
,
A.
Vetushka
,
Y. A.
Gonzalvo
,
G.
Sáfrán
,
L.
Székely
, and
P. B.
Barna
,
J. Appl. Phys.
109
,
104314
(
2011
).
8.
F.
Ferreira
,
J. C.
Oliveira
, and
A.
Cavaleiro
,
Surf. Coat. Technol.
291
,
365
(
2016
).
9.
S.
Konstantinidis
,
J. P.
Dauchot
, and
M.
Hecq
,
Thin Solid Films
515
,
1182
(
2006
).
10.
K.
Sarakinos
,
J.
Alami
, and
M.
Wuttig
,
J. Phys. D: Appl. Phys.
40
,
2108
(
2007
).
11.
M.
Hála
,
R.
Vernhes
,
O.
Zabeida
,
J.-E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Appl. Phys.
116
,
213302
(
2014
).
12.
J.
Vlček
,
J.
Rezek
,
J.
Houška
,
T.
Kozák
, and
J.
Kohout
,
Vacuum
114
,
131
(
2015
).
13.
J.
Rezek
,
J.
Vlček
,
J.
Houška
, and
R.
Čerstvý
,
Thin Solid Films
566
,
70
(
2014
).
14.
I.
Safi
,
Surf. Coat. Technol.
127
,
203
(
2000
).
15.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
,
Thin Solid Films
491
,
1
(
2005
).
16.
E.
Wallin
and
U.
Helmersson
,
Thin Solid Films
516
,
6398
(
2008
).
17.
M.
Aiempanakit
,
T.
Kubart
,
P.
Larsson
,
K.
Sarakinos
,
J.
Jensen
, and
U.
Helmersson
,
Thin Solid Films
519
,
7779
(
2011
).
18.
K.
Sarakinos
,
J.
Alami
,
C.
Klever
, and
M.
Wuttig
,
Surf. Coat. Technol.
202
,
5033
(
2008
).
19.
C.
Nouvellon
,
M.
Michiels
,
J. P.
Dauchot
,
C.
Archambeau
,
F.
Laffineur
,
E.
Silberberg
,
S.
Delvaux
,
R.
Cloots
,
S.
Konstantinidis
, and
R.
Snyders
,
Surf. Coat. Technol.
206
,
3542
(
2012
).
20.
T.
Kubart
,
M.
Aiempanakit
,
J.
Andersson
,
T.
Nyberg
,
S.
Berg
, and
U.
Helmersson
,
Surf. Coat. Technol.
205
,
S303
(
2011
).
21.
M.
Hála
,
J.
Čapek
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
45
,
55204
(
2012
).
22.
M.
Audronis
,
V.
Bellido-Gonzalez
, and
B.
Daniel
,
Surf. Coat. Technol.
204
,
2159
(
2010
).
23.
V.
Sittinger
,
O.
Lenck
,
M.
Vergöhl
,
B.
Szyszka
, and
G.
Bräuer
,
Thin Solid Films
548
,
18
(
2013
).
24.
S.
Kadlec
,
J.
Musil
, and
H.
Vyskocil
, “
Hysteresis effect in reactive sputtering: A problem of system stability
,”
J. Phys. D: Appl. Phys.
19
,
L187
(
1986
).
25.
S.
Kadlec
,
J.
Musil
, and
H.
Vyskocil
, “
Modeling of inhomogeneous film deposition and target erosion in reactive sputtering
,”
J. Vac. Sci. Technol. A
8
,
1560
(
1990
).
26.
S.
Kadlec
and
J.
Čapek
, “
Return of target material ions: The reason for reduced hysteresis in reactive high power impulse magnetron sputtering—Model
,”
J. Appl. Phys.
121
,
171910
(
2017
).
27.
A.
Mutzke
,
R.
Schneider
,
W.
Eckstein
, and
R.
Dohmen
,
SDTrimSP Version 5.00
(
IPP 12/8
,
Garching
,
2011
).
28.
D.
Depla
,
S.
Heirwegh
,
S.
Mahieu
,
J.
Haemers
, and
R.
De Gryse
,
J. Appl. Phys.
101
,
13301
(
2007
).
29.
T.
Kubart
,
D.
Depla
,
D. M.
Martin
,
T.
Nyberg
, and
S.
Berg
,
Appl. Phys. Lett.
92
,
221501
(
2008
).
30.
J.
Emmerlich
,
S.
Mráz
,
R.
Snyders
,
K.
Jiang
, and
J. M.
Schneider
,
Vacuum
82
,
867
(
2008
).
31.
T.
Kozák
,
J.
Vlček
, and
Š.
Kos
,
J. Phys. D: Appl. Phys.
46
,
105203
(
2013
).
32.
G.
Clarke
,
A.
Mishra
,
P. J.
Kelly
, and
J. W.
Bradley
,
Plasma Process. Polym.
6
,
S548
(
2009
).
33.
T.
Kubart
and
J.
Andersson
,
IOP Conf. Ser. Mater. Sci. Eng.
39
,
12008
(
2012
).
34.
S. M.
Rossnagel
,
J. Vac. Sci. Technol., A
6
,
19
(
1988
).
35.
S.
Berg
and
T.
Nyberg
,
Thin Solid Films
476
,
215
(
2005
).
36.
D. J.
Christie
,
J. Vac. Sci. Technol., A
23
,
330
(
2005
).
37.
J.
Vlček
and
K.
Burcalová
,
Plasma Sources Sci. Technol.
19
,
65010
(
2010
).
38.
T.
Kozák
and
J.
Vlček
,
J. Phys. D: Appl. Phys.
49
,
55202
(
2016
).
39.
A.
Anders
,
J. Vac. Sci. Technol., A
28
,
783
(
2010
).
You do not currently have access to this content.