A tendency to disappearing hysteresis in reactive High Power Impulse Magnetron Sputtering (HiPIMS) has been reported previously without full physical explanation. An analytical model of reactive pulsed sputtering including HiPIMS is presented. The model combines a Berg-type model of reactive sputtering with the global HiPIMS model of Christie-Vlček. Both time and area averaging is used to describe the macroscopic steady state, especially the reactive gas balance in the reactor. The most important effect in the presented model is covering of reacted parts of target by the returning ionized metal, effectively lowering the target coverage by reaction product at a given partial pressure. The return probability of ionized sputtered metal has been selected as a parameter to quantify the degree of HiPIMS effects. The model explains the reasons for reduced hysteresis in HiPIMS. The critical pumping speed was up to a factor of 7 lower in reactive HiPIMS compared to the mid-frequency magnetron sputtering. The model predicts reduced hysteresis in HiPIMS due to less negative slope of metal flux to substrates and of reactive gas sorption as functions of reactive gas partial pressure. Higher deposition rate of reactive HiPIMS compared to standard reactive sputtering is predicted for some parameter combinations. Comparison of the model with experiment exhibits good qualitative and quantitative agreement for three material combinations, namely, Ti-O2, Al-O2, and Ti-N2.

1.
S.
Berg
,
J. Vac. Sci. Technol., A
5
,
202
(
1987
).
2.
S.
Kadlec
,
J.
Musil
, and
H.
Vyskocil
,
J. Phys. D: Appl. Phys.
19
,
L187
(
1986
).
3.
I.
Safi
,
Surf. Coat. Technol.
127
,
203
(
2000
).
4.
S.
Kadlec
,
J.
Musil
, and
J.
Vyskočil
,
J. Vac. Sci. Technol., A
8
,
1560
(
1990
).
5.
S.
Berg
and
T.
Nyberg
,
Thin Solid Films
476
,
215
(
2005
).
6.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
,
Thin Solid Films
491
,
1
(
2005
).
7.
M.
Audronis
,
V.
Bellido-Gonzalez
, and
B.
Daniel
,
Surf. Coat. Technol.
204
,
2159
(
2010
).
8.
J.
Vlček
,
J.
Rezek
,
J.
Houška
,
R.
Čerstvý
, and
R.
Bugyi
,
Surf. Coat. Technol.
236
,
550
(
2013
).
9.
T.
Shimizu
,
M.
Villamayor
,
D.
Lundin
, and
U.
Helmersson
,
J. Phys. D: Appl. Phys.
49
,
65202
(
2016
).
10.
D.
Depla
and
R.
De Gryse
,
Surf. Coat. Technol.
183
,
184
(
2004
).
11.
D.
Depla
and
R.
De Gryse
,
Surf. Coat. Technol.
183
,
190
(
2004
).
12.
D.
Depla
,
S.
Heirwegh
,
S.
Mahieu
, and
R.
De Gryse
,
J. Phys. D: Appl. Phys.
40
,
1957
(
2007
).
13.
T.
Kubart
,
O.
Kappertz
,
T.
Nyberg
, and
S.
Berg
,
Thin Solid Films
515
,
421
(
2006
).
14.
E.
Wallin
and
U.
Helmersson
,
Thin Solid Films
516
,
6398
(
2008
).
15.
M.
Aiempanakit
,
T.
Kubart
,
P.
Larsson
,
K.
Sarakinos
,
J.
Jensen
, and
U.
Helmersson
,
Thin Solid Films
519
,
7779
(
2011
).
16.
M.
Aiempanakit
,
U.
Helmersson
,
A.
Aijaz
,
P.
Larsson
,
R.
Magnusson
,
J.
Jensen
, and
T.
Kubart
,
Surf. Coat. Technol.
205
,
4828
(
2011
).
17.
K.
Sarakinos
,
J.
Alami
,
C.
Klever
, and
M.
Wuttig
,
Surf. Coat. Technol.
202
,
5033
(
2008
).
18.
C.
Nouvellon
,
M.
Michiels
,
J. P.
Dauchot
,
C.
Archambeau
,
F.
Laffineur
,
E.
Silberberg
,
S.
Delvaux
,
R.
Cloots
,
S.
Konstantinidis
, and
R.
Snyders
,
Surf. Coat. Technol.
206
,
3542
(
2012
).
19.
A.
Surpi
,
T.
Kubart
,
D.
Giordani
,
M.
Tosello
,
G.
Mattei
,
M.
Colasuonno
, and
A.
Patelli
,
Surf. Coat. Technol.
235
,
714
(
2013
).
20.
T.
Kubart
,
M.
Aiempanakit
,
J.
Andersson
,
T.
Nyberg
,
S.
Berg
, and
U.
Helmersson
,
Surf. Coat. Technol.
205
,
S303
(
2011
).
21.
M.
Hála
,
J.
Čapek
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
45
,
55204
(
2012
).
22.
M.
Audronis
and
V.
Bellido-Gonzalez
,
Thin Solid Films
518
,
1962
(
2010
).
23.
V.
Sittinger
,
O.
Lenck
,
M.
Vergöhl
,
B.
Szyszka
, and
G.
Bräuer
,
Thin Solid Films
548
,
18
(
2013
).
24.
J.
Čapek
and
S.
Kadlec
, “
Return of target material ions: The reason for reduced hysteresis in reactive high power impulse magnetron sputtering – experiment
,”
J. Appl. Phys
121
,
171911
(
2017
).
25.
T.
Kubart
and
J.
Andersson
,
IOP Conf. Ser. Mater. Sci. Eng.
39
,
12008
(
2012
).
26.
S.
Kadlec
,
Plasma Process. Polym.
4
,
S419
(
2007
).
27.
D. J.
Christie
,
J. Vac. Sci. Technol., A
23
,
330
(
2005
).
28.
J.
Vlček
and
K.
Burcalová
,
Plasma Sources Sci. Technol.
19
,
65010
(
2010
).
29.
T.
Kozák
and
A. D.
Pajdarová
,
J. Appl. Phys.
110
,
103303
(
2011
).
30.
T.
Kozák
,
J.
Vlček
, and
Š.
Kos
,
J. Phys. D: Appl. Phys.
46
,
105203
(
2013
).
31.
J.
Čapek
,
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
46
,
205205
(
2013
).
32.
T.
Kozák
and
J.
Vlček
,
J. Phys. D: Appl. Phys.
49
,
55202
(
2016
).
33.
A.
Anders
,
Appl. Phys. Lett.
92
,
201501
(
2008
).
34.
P.
Vašina
,
T.
Hytková
, and
M.
Eliáš
,
Plasma Sources Sci. Technol.
18
,
25011
(
2009
).
35.
K.
Strijckmans
and
D.
Depla
,
Appl. Surf. Sci.
331
,
185
(
2015
).
36.
J.
Vlček
,
A. D.
Pajdarová
, and
J.
Musil
,
Contribution to Plasma Physics
(
Wiley‐VCH Verlag
,
2004
), pp.
426
436
.
37.
D.
Benzeggouta
,
M. C.
Hugon
, and
J.
Bretagne
,
Plasma Sources Sci. Technol.
18
,
45026
(
2009
).
38.
N.
Britun
,
T.
Minea
,
S.
Konstantinidis
, and
R.
Snyders
,
J. Phys. D: Appl. Phys.
47
,
224001
(
2014
).
39.
A.
Anders
,
J.
Čapek
,
M.
Hála
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
45
,
12003
(
2012
).
40.
C.
Huo
,
M. A.
Raadu
,
D.
Lundin
,
J. T.
Gudmundsson
,
A.
Anders
, and
N.
Brenning
, “
Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses
,”
Plasma Sources Sci. Technol.
21
,
045004
(
2012
).
41.
T.
Nyberg
,
S.
Berg
,
U.
Helmersson
, and
K.
Hartig
,
Appl. Phys. Lett.
86
,
164106
(
2005
).
42.
T.
Kuschel
and
A.
von Keudell
,
J. Appl. Phys.
107
,
103302
(
2010
).
43.
K.
Strijckmans
,
W. P.
Leroy
,
R.
De Gryse
, and
D.
Depla
,
Surf. Coat. Technol.
206
,
3666
(
2012
).
44.
K.
Strijckmans
,
W. P.
Leroy
,
R.
De Gryse
, and
D.
Depla
,
Surf. Coat. Technol.
278
,
126
(
2015
).
45.
E.
Särhammar
,
K.
Strijckmans
,
T.
Nyberg
,
S.
Van Steenberge
,
S.
Berg
, and
D.
Depla
,
Surf. Coat. Technol.
232
,
357
(
2013
).
You do not currently have access to this content.