Modern applications of refractory ceramic thin films, predominantly as wear-protective coatings on cutting tools and on components utilized in automotive engines, require a combination of excellent mechanical properties, thermal stability, and oxidation resistance. Conventional design approaches for transition metal nitride coatings with improved thermal and chemical stability are based on alloying with Al. It is well known that the solubility of Al in NaCl-structure transition metal nitrides is limited. Hence, the great challenge is to increase the Al concentration substantially while avoiding precipitation of the thermodynamically favored wurtzite-AlN phase, which is detrimental to mechanical properties. Here, we use VAlN as a model system to illustrate a new concept for the synthesis of metastable single-phase NaCl-structure thin films with the Al content far beyond solubility limits obtained with conventional plasma processes. This supersaturation is achieved by separating the film-forming species in time and energy domains through synchronization of the 70-μs-long pulsed substrate bias with intense periodic fluxes of energetic Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of the Al target and direct current magnetron sputtering of the V target in the Ar/N2 gas mixture. Hereby, Al is subplanted into the cubic VN grains formed by the continuous flux of low-energy V neutrals. We show that Al subplantation enables an unprecedented 42% increase in metastable Al solubility limit in V1-xAlxN, from x = 0.52 obtained with the conventional method to 0.75. The elastic modulus is 325 ± 5 GPa, in excellent agreement with density functional theory calculations, and approximately 50% higher than for corresponding films grown by dc magnetron sputtering. The extension of the presented strategy to other Al-ion-assisted vapor deposition methods or materials systems is straightforward, which opens up the way for producing supersaturated single-phase functional ceramic alloy thin films combining excellent mechanical properties with high oxidation resistance.

1.
H.
Schulz
and
K. H.
Thiermann
,
Solid State Commun.
23
,
815
(
1977
).
2.
O.
Knotek
,
M.
Böhmer
, and
T.
Leyendecker
,
J. Vac. Sci. Technol. A
4
,
2695
(
1986
).
3.
A. E.
Reiter
,
V. H.
Derflinger
,
B.
Hanselmann
,
T.
Bachmann
, and
B.
Sartory
,
Surf. Coat. Technol.
200
,
2114
(
2005
).
4.
A.
Kimura
,
H.
Hasegawa
,
K.
Yamada
, and
T.
Suzuki
,
Surf. Coat. Technol.
120–121
,
438
(
1999
).
5.
A.
Hörling
,
L.
Hultman
,
M.
Odén
,
J.
Sjölén
, and
L.
Karlsson
,
Surf. Coat. Technol.
191
,
384
(
2005
).
6.
P. H.
Mayrhofer
,
D.
Music
, and
J. M.
Schneider
,
Appl. Phys. Lett.
88
,
071922
(
2006
).
7.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
21
,
S117
(
2003
).
8.
Y.
Makino
,
M.
Mori
,
S.
Miyake
,
K.
Saito
, and
K.
Asami
,
Surf. Coat. Technol.
193
,
219
(
2005
).
9.
U.
Wahlström
,
L.
Hultman
,
J.-E.
Sundgren
,
F.
Adibi
,
I.
Petrov
, and
J. E.
Greene
,
Thin Solid Films
235
,
62
(
1993
).
10.
A.
Sugishima
,
H.
Kajioka
, and
Y.
Makino
,
Surf. Coat. Technol.
97
,
590
(
1997
).
11.
R.
Rachbauer
,
S.
Massl
,
E.
Stergar
,
D.
Holec
,
D.
Kiener
,
J.
Keckes
,
J.
Patscheider
,
M.
Stiefel
,
H.
Leitner
, and
P. H.
Mayrhofer
,
J. Appl. Phys.
110
,
023515
(
2011
).
12.
M.
to Baben
,
M.
Hans
,
D.
Primetzhofer
,
S.
Evertz
,
H.
Ruess
, and
J. M.
Schneider
, “
Unprecedented thermal stability of inherently metastable titanium aluminum nitride by point defect engineering
,”
Mater. Res. Lett.
(published online
2016
).
13.
H.
Hasegawa
,
M.
Kawate
, and
T.
Suzuki
,
Surf. Coat. Technol.
200
,
2409
(
2005
).
14.
A.
Hörling
,
L.
Hultman
,
M.
Odén
,
J.
Sjölén
, and
L.
Karlsson
, “
Thermal Stability of arc evaporated high aluminium-content Ti1-xAlxN thin films
,”
J. Vac. Sci. Technol. A
20
,
1815
(
2002
).
15.
J. M.
Andersson
,
J.
Vetter
,
J.
Müller
, and
J.
Sjölén
,
Surf. Coat. Technol.
240
,
211
(
2014
).
16.
J.
Vetter
,
J. Adv. Mater.
31
,
41
(
1999
).
17.
S.
Kolozsvári
,
P.
Pesch
,
C.
Ziebert
,
M.
Stueber
, and
S.
Ulrich
,
Plasma Process. Polym.
6
,
S146
(
2009
).
18.
P.
Zhu
,
F.
Ge
,
S.
Li
,
Q.
Xue
, and
F.
Huang
,
Surf. Coat. Technol.
232
,
311
(
2013
).
19.
F.
Rovere
,
D.
Music
,
S.
Ershov
,
M.
to Baben
,
H.-G.
Fuss
,
P. H.
Mayrhofer
, and
J. M.
Schneider
,
J. Phys. D: Appl. Phys.
43
,
035302
(
2010
).
20.
M.
Liewald
,
S.
Wagner
,
D.
Becker
,
C.
Ziebert
,
P.
Pesch
, and
S.
Kolozsvári
,
Int. J. Adv. Manuf. Technol.
58
,
495
(
2012
).
21.
V.
Kouznetsov
,
K.
Macak
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
,
Surf. Coat. Technol.
122
,
290
(
1999
).
22.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
,
Thin Solid Films
513
,
1
(
2006
).
23.
K.
Sarakinos
,
J.
Alami
, and
S.
Konstantinidis
,
Surf. Coat. Technol.
204
,
1661
(
2010
).
24.
G.
Greczynski
,
J.
Lu
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
,
S.
Bolz
,
W.
Kölker
,
Ch.
Schiffers
,
O.
Lemmer
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
30
,
061504
(
2012
).
25.
G.
Greczynski
,
J.
Lu
,
J.
Jensen
,
S.
Bolz
,
W.
Kölker
,
Ch.
Schiffers
,
O.
Lemmer
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Coat. Technol.
257
,
15
(
2014
).
26.
G.
Greczynski
,
J.
Lu
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
,
S.
Bolz
,
W.
Kölker
,
Ch.
Schiffers
,
O.
Lemmer
, and
L.
Hultman
,
Thin Solid Films
556
,
87
(
2014
).
27.
G.
Greczynski
,
J.
Lu
,
M.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Coat. Technol.
206
,
4202
(
2012
).
28.
G.
Greczynski
,
J.
Lu
,
M.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Vacuum
86
,
1036
(
2012
).
29.
G.
Greczynski
,
J.
Patscheider
,
J.
Lu
,
B.
Alling
,
A.
Ektarawong
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Coat. Technol.
280
,
174
(
2015
).
30.
K.
Macak
,
V.
Kouznetsov
,
J.
Schneider
,
U.
Helmersson
, and
I.
Petrov
,
J. Vac. Sci. Technol. A
18
,
1533
(
2000
).
31.
For a more detailed description of the coating unit see http://www.cemecon.de/coating_technology/coating_units/cc800_hipims/index_eng.html (last access date 28 February 2017).
32.
For all other Al-HIPIMS/V-DCMS VAlN films the bias pulse length was 100 μs.
33.
See, e.g.,
M.
Birkholz
,
Thin Film Analysis by X-ray Scattering
(
Wiley-VCH
,
Weinheim
,
2006
), Chap. 6, ISBN-10:3-527-31052-5.
34.
B. D.
Fulcher
,
X. Y.
Cui
,
B.
Delley
, and
C.
Stampfl
,
Phys. Rev. B
85
,
184106
(
2012
).
35.
H.
Watanabe
,
N.
Yamada
, and
M.
Okaji
,
Int. J. Thermophys.
25
,
221
(
2004
).
36.
H. O.
Pierson
,
Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications
(
William Andrew
,
1996
), p.
193
, ISBN 0-8155-1392-5.
37.
T. F.
Kelly
and
D. J.
Larson
, “
Atom probe tomography 2012
,”
Annu. Rev. Mater. Res.
42
,
1
31
(
2012
).
38.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
39.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
B871
(
1964
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Enzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
41.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
16233
(
1994
).
42.
H. J.
Monkhorst
and
D. J.
Pack
,
Phys. Rev. B
13
,
5188
5192
(
1976
).
43.
F.
Birch
,
J. Geophys. Res.
83
,
1257
1268
, doi: (
1978
).
44.
A.
Mei
,
R. B.
Wilson
,
D.
Li
,
D. G.
Cahill
,
A.
Rockett
,
J.
Birch
,
L.
Hultman
,
J. E.
Greene
, and
I.
Petrov
,
J. Appl. Phys.
115
,
214908
(
2014
).
45.
The JCPDS database (
1998
), data set number: 25–1133.
46.
The JCPDS database (
1998
), data set number: 35–0768.
47.
The JCPDS database (
1998
), data set number: 38–1420;
W.
Wong-Ng
,
H.
McMurdie
,
B.
Paretzkin
,
C.
Hubbard
, and
A.
Dragoo
,
Powder Diffraction
2
,
2
(
1987
).
48.
T. Y.
Tsui
,
G. M.
Pharr
, and
W. C.
Oliver
, in
Materials Research Society Symposia Proceedings
(
1995
), Vol. 383, p.
447
.
49.
J.
Musil
,
Surf. Coat. Technol.
125
,
322
(
2000
).
50.
K. P.
Shaha
,
H.
Ruess
,
S.
Rotert
,
M.
Baben
,
D.
Music
, and
J. M.
Schneider
,
Appl. Phys. Lett.
103
,
221905
(
2013
).
51.
N.-E.
Lee
,
D. G.
Cahill
, and
J. E.
Greene
,
J. Appl. Phys.
80
,
2199
(
1996
).
52.
J.
Krug
,
P.
Politi
, and
T.
Michely
,
Phys. Rev. B
61
,
14037
(
2000
).
53.
B. W.
Karr
,
I.
Petrov
,
D. G.
Cahill
, and
J. E.
Greene
,
Appl. Phys. Lett.
70
,
1703
(
1997
).
54.
C.
Roland
and
H.
Guo
,
Phys. Rev. Lett.
66
,
2104
(
1991
).
55.
A.
Anders
,
Appl. Phys. Lett.
80
,
1100
(
2002
).
56.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
, Stopping and Ranges of Ions in Matter Vol. 1 (
Pergamon Press
,
New York
,
1984
).
57.
J.
Böhlmark
,
J.
Alami
,
C.
Christou
,
A. P.
Ehiasarian
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
23
,
18
(
2005
).
58.
G.
Greczynski
,
J.
Jensen
, and
L.
Hultman
,
Thin Solid Films
519
,
6354
6361
(
2011
).
59.
G.
Greczynski
and
L.
Hultman
,
Vacuum
124
,
1
(
2016
).
60.
G.
Greczynski
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Vacuum
116
,
36
(
2015
).
61.
CRC Handbook of Chemistry and Physics
, 84th ed., edited by
D. R.
Lide
(
CRC Press
,
Boca Raton, Florida
,
2003
), Sect. 10.
62.
J. E.
Greene
, “
Thin film nucleation, growth, and microstructural evolution: an atomic scale view
,” in
Handbook of Deposition Technologies for Thin Films and Coatings
, 3rd ed., edited by
P.
Martin
(
William Andrew Publications (Elsevier)
,
Burlington, MA
,
2010
).
63.
J. M. E.
Harper
,
J. J.
Cuomo
, and
R. J.
Gambino
,
Ion Bombardment Modification of Surfaces: Fundamentals and Applications
, edited by
O.
Auciello
and
R.
Kelly
(
Elsevier
,
Amsterdam
,
1984
).
64.
L.
Hultman
,
J.-E.
Sundgren
,
L. C.
Markert
, and
J. E.
Greene
,
J. Vac Sci. Technol. A
7
,
1187
(
1989
).
You do not currently have access to this content.