Hard Ti1−xAlxN thin films are of importance for metal-cutting applications. The hardness, thermal stability, and oxidation resistance of these coatings can be further enhanced by alloying with TaN. We use a hybrid high-power pulsed and dc magnetron co-sputtering (HIPIMS/DCMS) technique to grow dense and hard Ti0.41Al0.51Ta0.08N alloys without external heating (Ts < 150 °C). Separate Ti and Al targets operating in the DCMS mode maintain a deposition rate of ∼50 nm/min, while irradiation of the growing film by heavy Ta+/Ta2+ ions from the HIPIMS-powered Ta target, using dc bias synchronized to the metal-ion-rich part of each HIPIMS pulse, provides effective near-surface atomic mixing resulting in densification. The substrate is maintained at floating potential between the short bias pulses to minimize Ar+ bombardment, which typically leads to high compressive stress. Transmission and scanning electron microscopy analyses reveal dramatic differences in the microstructure of the co-sputtered HIPIMS/DCMS films (Ta-HIPIMS) compared to films with the same composition grown at floating potential with all targets in the DCMS mode (Ta-DCMS). The Ta-DCMS alloy films are only ∼70% dense due to both inter- and intra-columnar porosity. In contrast, the Ta-HIPIMS layers exhibit no inter-columnar porosity and are essentially fully dense. The mechanical properties of Ta-HIPIMS films are significantly improved with hardness and elastic modulus values of 28.0 and 328 GPa compared to 15.3 and 289 GPa for reference Ta-DCMS films.

1.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol., A
21
,
S117
(
2003
).
2.
D.
Gall
,
I.
Petrov
,
N.
Hellgren
,
L.
Hultman
,
J. E.
Sundgren
, and
J. E.
Greene
,
J. Appl. Phys.
84
,
6034
(
1998
).
3.
G.
Håkansson
,
J.-E.
Sundgren
,
D.
McIntyre
,
J. E.
Greene
, and
W.-D.
Münz
,
Thin Solid Films
153
,
55
(
1987
).
4.
I.
Petrov
,
L.
Hultman
,
J.-E.
Sundgren
, and
J. E.
Greene
,
J. Vac. Sci. Technol., A
10
,
265
(
1992
).
5.
G.
Greczynski
,
J.
Lu
,
S.
Bolz
,
W.
Kölker
,
C.
Schiffers
,
O.
Lemmer
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol., A
32
,
41515
(
2014
).
6.
G.
Greczynski
,
J.
Lu
,
M. P.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Coat. Technol.
206
,
4202
(
2012
).
7.
G.
Greczynski
,
J.
Lu
,
M.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Vacuum
86
,
1036
(
2012
).
8.
M. P. J.
Jõesaar
,
N.
Norrby
,
J.
Ullbrand
,
R.
M'Saoubi
, and
M.
Odén
,
Surf. Coat. Technol.
235
,
181
(
2013
).
9.
N.
Norrby
,
M. P.
Johansson-Jõesaar
, and
M.
Odén
,
Surf. Coat. Technol.
257
,
102
(
2014
).
10.
A.
Inspektor
and
P. A.
Salvador
,
Surf. Coat. Technol.
257
,
138
(
2014
).
11.
S.
PalDey
and
S.
Deevi
,
Mater. Sci. Eng. A
342
,
58
(
2003
).
12.
G.
Erkens
,
R.
Cremer
,
T.
Hamoudi
,
K.-D.
Bouzakis
,
I.
Mirisidis
,
S.
Hadjiyiannis
,
G.
Skordaris
,
A.
Asimakopoulos
,
S.
Kombogiannis
,
J.
Anastopoulos
, and
K.
Efstathiou
,
Surf. Coat. Technol.
177–178
,
727
(
2004
).
13.
M.
Kathrein
,
C.
Michotte
,
M.
Penoy
,
P.
Polcik
, and
C.
Mitterer
,
Surf. Coat. Technol.
200
,
1867
(
2005
).
14.
K.-D.
Bouzakis
,
N.
Michailidis
,
G.
Skordaris
,
E.
Bouzakis
,
D.
Biermann
, and
R.
M'Saoubi
,
CIRP Ann. - Manuf. Technol.
61
,
703
(
2012
).
15.
R.
Hollerweger
,
H.
Riedl
,
J.
Paulitsch
,
M.
Arndt
,
R.
Rachbauer
,
P.
Polcik
,
S.
Primig
, and
P. H.
Mayrhofer
,
Surf. Coat. Technol.
257
,
78
(
2014
).
16.
X.
Sui
,
G.
Li
,
C.
Jiang
,
H.
Yu
,
K.
Wang
, and
Q.
Wang
,
Int. J. Refract. Met. Hard Mater.
58
,
152
(
2016
).
17.
M.
Pfeiler
,
C.
Scheu
,
H.
Hutter
,
J.
Schnöller
,
C.
Michotte
,
C.
Mitterer
, and
M.
Kathrein
,
J. Vac. Sci. Technol., A
27
,
554
(
2009
).
18.
See http://www.cemecon.de/coating_technology/coating_units/hipims_sputter_coating_system/index_eng.html for CemeCon, CC800/9 HIPIMS system (last accessed 23 August
2016
).
19.
J.
Jensen
,
D.
Martin
,
A.
Surpi
, and
T.
Kubart
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1893
(
2010
).
20.
M. S.
Janson
, CONTES Conversion of Time-Energy Spectra—A Program for ERDA Data Analysis,
2004
.
21.
I.
Petrov
,
A.
Myers
,
J. E.
Greene
, and
J. R.
Abelson
,
J. Vac. Sci. Technol., A
12
,
2846
(
1994
).
22.
D. J.
Christie
,
J. Vac. Sci. Technol., A
23
,
330
(
2005
).
23.
M.
Samuelsson
,
D.
Lundin
,
J.
Jensen
,
M. A.
Raadu
,
J. T.
Gudmundsson
, and
U.
Helmersson
,
Surf. Coat. Technol.
205
,
591
(
2010
).
24.
M.
Birkholz
,
Thin Film Analysis by X-Ray Scattering
(
Wiley-VCH Verlag GmbH & Co.
,
Weinheim
,
2006
).
25.
D. G.
Sangiovanni
,
V.
Chirita
, and
L.
Hultman
,
Thin Solid Films
520
,
4080
(
2012
).
26.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
27.
JCPDS, TaN Powder Diffraction File: 00-049-1283.
28.
JCPDS, TiN Powder Diffraction File: 00-038-1420.
29.
JCPDS, AlN Powder Diffraction File: 00-046-1200.
30.
JCPDS, AlN Powder Diffraction File: 00-025-1133.
31.
JCPDS, (AlTi)N2 Powder Diffraction File: 01-071-5864.
32.
33.
J. A.
Thornton
,
J. Vac. Sci. Technol., A
4
,
3059
(
1986
).
34.
I.
Petrov
,
L.
Hultman
,
U.
Helmersson
,
J.-E.
Sundgren
, and
J. E.
Greene
,
Thin Solid Films
169
,
299
(
1989
).
35.
A.
Leyland
and
A.
Matthews
,
Wear
246
,
1
(
2000
).
36.
See http://www.srim.org for SRIM, Interactions of ions with matter (last accessed 23 August
2016
).
37.
N.
Norrby
,
L.
Rogström
,
M. P.
Johansson-Jõesaar
,
N.
Schell
, and
M.
Odén
,
Acta Mater.
73
,
205
(
2014
).
38.
R.
Rachbauer
,
S.
Massl
,
E.
Stergar
,
D.
Holec
,
D.
Kiener
,
J.
Keckes
,
J.
Patscheider
,
M.
Stiefel
,
H.
Leitner
, and
P. H.
Mayrhofer
,
J. Appl. Phys.
110
,
23515
(
2011
).
39.
P. H.
Mayrhofer
,
A.
Hörling
,
L.
Karlsson
,
J.
Sjölén
,
T.
Larsson
,
C.
Mitterer
, and
L.
Hultman
,
Appl. Phys. Lett.
83
,
2049
(
2003
).
You do not currently have access to this content.