A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure transition of deposited TiAlSiN compound films, demonstrating the applicability of this approach in understanding the characteristics of reactive MPPMS discharges as well as the composition and microstructure of deposited compound films. The model for reactive MPPMS discharges has no special limitations and is applicable to high power impulse magnetron sputtering discharges as well.

1.
V.
Kouznetsov
,
K.
Macak
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
,
Surf. Coat. Technol.
122
,
290
(
1999
).
2.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
30
,
030801
(
2012
).
3.
J.
Alami
,
J. T.
Gudmundsson
,
J.
Bohlmark
,
J.
Birch
, and
U.
Helmersson
,
Plasma Sources Sci. Technol.
14
,
525
(
2005
).
4.
J. T.
Gudmundsson
,
P.
Sigurjonsson
,
P.
Larsson
,
D.
Lundin
, and
U.
Helmersson
,
J. Appl. Phys.
105
,
123302
(
2009
).
5.
A.
Anders
,
Surf. Coat. Technol.
205
,
S1
(
2011
).
6.
J.
Bohlmark
,
J.
Alami
,
C.
Christou
,
A. P.
Ehiasarian
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
23
,
18
(
2005
).
7.
E.
Oks
and
A.
Anders
,
J. Appl. Phys.
105
,
093304
(
2009
).
8.
J.
Alami
,
P.
Persson
,
D.
Music
,
J. T.
Gudmundsson
,
J.
Bohmark
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
23
,
278
(
2005
).
9.
K.
Bobzin
,
N.
Bagcivan
,
P.
Immich
,
S.
Bolz
,
R.
Cremer
, and
T.
Leyendecker
,
Thin Solid Films
517
,
1251
(
2008
).
10.
M.
Balzer
and
M.
Fenker
,
Surf. Coat. Technol.
250
,
37
(
2014
).
11.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
21
,
S117
(
2003
).
12.
M.
Samuelsson
,
D.
Lundin
,
J.
Jensen
,
M. A.
Raadu
,
J. T.
Gudmundsson
, and
U.
Helmersson
,
Surf. Coat. Technol.
205
,
591
(
2010
).
13.
A. P.
Ehiasarian
,
J. G.
Wen
, and
I.
Petrov
,
J. Appl. Phys.
101
,
054301
(
2007
).
14.
R.
Chistyakov
,
B.
Abraham
, and
W. D.
Sproul
, in
Proceedings of the 49th Annual Technical Conference
(Society of Vacuum Coaters, Washington, D. C.,
2006
),
p. 88
.
15.
J. L.
Lin
,
W. D.
Sproul
,
J. J.
Moore
,
S.
Lee
, and
S.
Myers
,
Surf. Coat. Technol.
205
,
3226
(
2011
).
16.
F.
Papa
,
H.
Gerdes
,
R.
Bandorf
,
A. P.
Ehiasarian
,
I.
Kolev
,
G.
Braeuer
,
R.
Tietema
, and
T.
Krug
,
Thin Solid Films
520
,
1559
(
2011
).
17.
J.
Lin
,
J. J.
Moore
,
W. D.
Sproul
,
B.
Mishra
,
J. A.
Rees
,
Z.
Wu
,
R.
Chistyakov
, and
B.
Abraham
,
Surf. Coat. Technol.
203
,
3676
(
2009
).
18.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
,
Thin Solid Films
491
,
1
(
2005
).
19.
L. B.
Jonsson
,
T.
Nyberg
, and
S.
Berg
,
J. Vac. Sci. Technol. A
18
,
503
(
2000
).
20.
L. B.
Jonsson
,
T.
Nyberg
,
I.
Katardjiev
, and
S.
Berg
,
Thin Solid Films
365
,
43
(
2000
).
21.
T.
Kubart
,
O.
Kappertz
,
T.
Nyberg
, and
S.
Berg
,
Thin Solid Films
515
,
421
(
2006
).
22.
S.
Berg
,
H. O.
Blom
,
T.
Larsson
, and
C.
Nender
,
J. Vac. Sci. Technol. A
5
,
202
(
1987
).
23.
S.
Berg
,
E.
Sarhammar
, and
T.
Nyberg
,
Thin Solid Films
565
,
186
(
2014
).
24.
E.
Bultinck
,
S.
Mahieu
,
D.
Depla
, and
A.
Bogaerts
,
New J. Phys.
11
,
023039
(
2009
).
25.
J. T.
Gudmundsson
,
Plasma Phys. Controlled Fusion
58
,
014002
(
2016
).
26.
M.
Hala
,
R.
Vernhes
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Appl. Phys.
116
,
213302
(
2014
).
27.
C.
Vitelaru
,
D.
Lundin
,
N.
Brenning
, and
T.
Minea
,
Appl. Phys. Lett.
103
,
104105
(
2013
).
28.
D. J.
Christie
,
J. Vac. Sci. Technol. A
23
,
330
(
2005
).
29.
J.
Vlcek
and
K.
Burcalova
,
Plasma Sources Sci. Technol.
19
,
065010
(
2010
).
30.
M. A.
Raadu
,
I.
Axnas
,
J. T.
Gudmundsson
,
C.
Huo
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
20
,
065007
(
2011
).
31.
N.
Brenning
,
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
C.
Vitelaru
,
G. D.
Stancu
,
T.
Minea
, and
U.
Helmersson
,
Plasma Sources Sci. Technol.
21
,
025005
(
2012
).
32.
C. Q.
Huo
,
M. A.
Raadu
,
D.
Lundin
,
J. T.
Gudmundsson
,
A.
Anders
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
21
,
045004
(
2012
).
33.
C. Q.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
22
,
045005
(
2013
).
34.
C. Q.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
23
,
025017
(
2014
).
35.
B. C.
Zheng
,
D.
Meng
,
H. L.
Che
, and
M. K.
Lei
,
J. Appl. Phys.
117
,
203302
(
2015
).
36.
T.
Kozak
and
J.
Vlcek
,
J. Phys. D
49
,
055202
(
2016
).
37.
J. T.
Gudmundsson
,
D.
Lundin
,
N.
Brenning
,
M. A.
Raadu
,
C.
Huo
, and
T. M.
Minea
,
Plasma Sources Sci. Technol.
25
,
065004
(
2016
).
38.
Z. L.
Wu
,
Y. G.
Li
,
B.
Wu
, and
M. K.
Lei
,
Thin Solid Films
597
,
197
(
2015
).
39.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley and Sons Inc.
,
New Jersey
,
2005
).
40.
A.
Anders
,
Appl. Phys. Lett.
92
,
201501
(
2008
).
41.
F.
Magnus
,
O. B.
Sveinsson
,
S.
Olafsson
, and
J. T.
Gudmundsson
,
J. Appl. Phys.
110
,
083306
(
2011
).
42.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
J. Appl. Phys.
87
,
7191
(
2000
).
43.
K.
Tao
,
D.
Mao
, and
J.
Hopwood
,
J. Appl. Phys.
91
,
4040
(
2002
).
44.
S.
Ashida
,
C.
Lee
, and
M. A.
Lieberman
,
J. Vac. Sci. Technol. A
13
,
2498
(
1995
).
45.
J. A.
Hopwood
,
Ionized Physical Vapor Deposition
(
Academic Press
,
San Diego
,
2000
), Vol. 27.
46.
J. T.
Gudmundsson
,
J. Phys. Conf. Ser.
100
,
082013
(
2008
).
47.
D.
Guttler
,
R.
Grotzschel
, and
W.
Moller
,
Appl. Phys. Lett.
90
,
263502
(
2007
).
48.
M.
Moradi
,
J. Vac. Sci. Technol. A
9
,
619
(
1991
).
49.
T.
Kubart
,
M.
Aiempanakit
,
J.
Andersson
,
T.
Nyberg
,
S.
Berg
, and
U.
Helmersson
,
Surf. Coat. Technol.
205
,
S303
(
2011
).
50.
K.
Strijckmans
and
D.
Depla
,
J. Phys. D
47
,
235302
(
2014
).
51.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods B
268
,
1818
(
2010
).
52.
S.
Berg
and
T.
Nyberg
,
Thin Solid Films
476
,
215
(
2005
).
53.
W.
Moeller
and
D.
Guettler
,
J. Appl. Phys.
102
,
094501
(
2007
).
54.
M.
Aiempanakit
,
T.
Kubart
,
P.
Larsson
,
K.
Sarakinos
,
J.
Jensen
, and
U.
Helmersson
,
Thin Solid Films
519
,
7779
(
2011
).
55.
A.
Anders
,
J.
Andersson
, and
A.
Ehiasarian
,
J. Appl. Phys.
102
,
113303
(
2007
).
56.
V. N.
Tondare
,
C.
Balasubramanian
,
S. V.
Shende
,
D. S.
Joag
,
V. P.
Godbole
,
S. V.
Bhoraskar
, and
M.
Bhadbhade
,
Appl. Phys. Lett.
80
,
4813
(
2002
).
57.
B. P.
Luther
,
S. E.
Mohney
, and
T. N.
Jackson
,
Semicond. Sci. Technol.
13
,
1322
(
1998
).
58.
J. G.
Speight
,
Lange's Handbook of Chemistry
(
McGraw-Hill
,
New York
,
2005
).
59.
M. W.
Thompson
,
Philos. Mag.
18
,
377
(
1968
).
60.
D.
Lundin
,
S.
Al Sahab
,
N.
Brenning
,
C.
Huo
, and
U.
Helmersson
,
Plasma Sources Sci. Technol.
20
,
045003
(
2011
).
61.
H.
Muta
,
N.
Itagaki
, and
Y.
Kawai
,
Vacuum
66
,
209
(
2002
).
62.
E.
Wallin
and
U.
Helmersson
,
Thin Solid Films
516
,
6398
(
2008
).
63.
M.
Hala
,
J.
Capek
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D
45
,
055204
(
2012
).
64.
W. Y.
Wu
,
A.
Su
,
Y.
Liu
,
C. M.
Yeh
,
W. C.
Chen
, and
C. L.
Chang
,
Surf. Coat. Technol.
303
,
48
(
2016
).
65.
A.
Anders
,
Thin Solid Films
518
,
4087
(
2010
).
66.
J.
Alami
,
K.
Sarakinos
,
F.
Uslu
, and
M.
Wuttig
,
J. Phys. D
42
,
015304
(
2009
).
67.
C. L.
Chang
,
S. G.
Shih
,
P. H.
Chen
,
W. C.
Chen
,
C. T.
Ho
, and
W. Y.
Wu
,
Surf. Coat. Technol.
259
,
232
(
2014
).
68.
F.
Ferreira
,
R.
Serra
,
J. C.
Oliveira
, and
A.
Cavaleiro
,
Surf. Coat. Technol.
258
,
249
(
2014
).
69.
N. J.
Mason
and
W. R.
Newell
,
J. Phys. B
20
,
1357
(
1987
).
70.
V.
Puech
and
L.
Torchin
,
J. Phys. D
19
,
2309
(
1986
).
71.
H. A.
Hyman
,
Phys. Rev. A
20
,
855
(
1979
).
72.
J. T.
Gudmundsson
, “
Electron excitation rate coefficients for the nitrogen discharge
,”
Technical Report No. RH-09-2005
(Science Institute, University of Iceland,
2005
).
73.
R. S.
Freund
,
R. C.
Wetzel
, and
R. J.
Shul
,
Phys. Rev. A
41
,
5861
(
1990
).
74.
P. C.
Cosby
,
J. Chem. Phys.
98
,
9544
(
1993
).
75.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
18
,
045001
(
2009
).
76.
M. A.
Lennon
,
K. L.
Bell
,
H. B.
Gilbody
,
J. G.
Hughes
,
A. E.
Kingston
,
M. J.
Murray
, and
F. J.
Smith
,
J. Phys. Chem. Ref. Data
17
,
1285
(
1988
).
You do not currently have access to this content.