High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

1.
W. R.
Grove
, “
On some anomalous cases of electrical decomposition
,”
Philos. Mag. Ser.
45
,
203
(
1853
).
2.
Sputtering by Particle Bombardment
, edited by
R.
Behrisch
and
W.
Eckstein
(
Springer
,
Berlin
,
2007
).
3.
M. W.
Thompson
, “
Physical mechanisms of sputtering
,”
Phys. Rep.
69
,
335
(
1981
).
4.
Reactive Sputter Deposition
, edited by
D.
Depla
and
S.
Mahieu
(
Springer
,
Heidelberg
,
2008
).
5.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon Press
,
New York
,
1985
).
6.
J. F.
Ziegler
and
J.
Biersack
, see http://srim.org/ see “Monte Carlo code SRIM2013,
2013
.
7.
Y.
Yamamura
and
H.
Tawara
, “
Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence
,”
At. Data Nucl. Data Tables
62
,
149
(
1996
).
8.
P.
Sigmund
, “
Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets
,”
Phys. Rev.
184
,
383
(
1969
).
9.
J.
Bohdansky
,
Nucl. Instrum. Methods Phys. Res. B
2
,
587
(
1984
).
10.
M. W.
Thompson
, “
The energy spectrum of ejected atoms during the high energy sputtering of gold
,”
Philos. Mag.
18
,
377
(
1968
).
11.
V. V.
Serikov
and
K.
Nanbu
, “
The analysis of background gas heating in direct current sputtering discharges via particle simulation
,”
J. Appl. Phys.
82
,
5948
(
1997
).
12.
Y.
Kudriavtsev
,
A.
Villegas
,
A.
Godines
, and
R.
Asomoza
, “
Calculation of the surface binding energy for ion sputtered particles
,”
Appl. Surf. Sci.
239
,
273
(
2005
).
13.
G.
Betz
and
W.
Husinsky
, “
Modelling of cluster emission from metal surfaces under ion impact
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
362
,
177
(
2004
).
14.
A.
Anders
, “
Discharge physics of high power impulse magnetron sputtering
,”
Surf. Coat. Technol.
205
,
S1
(
2011
).
15.
F. F.
Chen
,
Plasma Physics and Controlled Fusion
(
Plenum Press
,
New York
,
1984
).
16.
J. W.
Bradley
,
S.
Thompson
, and
Y. A.
Gonzalvo
, “
Measurement of the plasma potential in a magnetron discharge and the prediction of the electron drift speeds
,”
Plasma Sources Sci. Technol.
10
,
490
(
2001
).
17.
A.
Rauch
and
A.
Anders
, “
Estimating electron drift velocities in magnetron discharges
,”
Vacuum
89
,
53
(
2013
).
18.
O.
Chapurin
and
A.
Smolyakov
, “
On the electron drift velocity in plasma devices with E × B drift
,”
J. Appl. Phys.
119
,
243306
(
2016
).
19.
Q. H.
Fan
,
L. Q.
Zhou
, and
J. J.
Gracio
, “
A cross-corner effect in a rectangular sputtering magnetron
,”
J. Phys. D: Appl. Phys.
36
,
244
(
2003
).
20.
J. A.
Thornton
, “
Magnetron sputtering: Basic physics and application to cylindrical magnetrons
,”
J. Vac. Sci. Technol.
15
,
171
(
1978
).
21.
J. A.
Thornton
, “
Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings
,”
J. Vac. Sci. Technol.
11
,
666
(
1974
).
22.
B.
Window
and
N.
Savvides
, “
Unbalanced DC magnetrons as sources of high ion fluxes
,”
J. Vacuum Sci. Technol. A
4
,
453
(
1986
).
23.
B.
Window
and
N.
Savvides
, “
Charged particle fluxes from planar magnetron sputtering sources
,”
J. Vac. Sci. Technol. A
4
,
196
(
1986
).
24.
A.
Anders
, “
A structure zone diagram including plasma-based deposition and ion etching
,”
Thin Solid Films
518
,
4087
(
2010
).
25.
A.
Anders
,
P.
Ni
, and
J.
Andersson
, “
Drifting ionization zone in sputtering magnetron discharges at very low currents
,”
IEEE Trans. Plasma Sci.
42
,
2578
(
2014
).
26.
J.-P.
Boeuf
and
B.
Chaudhury
, “
Rotating instability in low-temperature magnetized plasmas
,”
Phys. Rev. Lett.
111
,
155005
(
2013
).
27.
P. A.
Ni
,
C.
Hornschuch
,
M.
Panjan
, and
A.
Anders
, “
Plasma flares in high power impulse magnetron sputtering
,”
Appl. Phys. Lett.
101
,
224102
(
2012
).
28.
J. P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
29.
B.
Szapiro
and
J. J.
Rocca
, “
Electron emission from glow-discharge cathode materials due to neon and argon ion bombardment
,”
J. Appl. Phys.
65
,
3713
(
1989
).
30.
H.
Eder
,
W.
Messerschmidt
,
H.
Winter
, and
F.
Aumayr
, “
Electron emission from clean gold bombardment by slow Auq+ (q = 1-3) ions
,”
J. Appl. Phys.
87
,
8198
(
2000
).
31.
R. A.
Baragiola
,
E. V.
Alonso
,
J.
Ferron
, and
A.
Oliva-Florio
, “
Ion-induced electron emission from clean metals
,”
Surf. Sci.
90
,
240
(
1979
).
32.
M.
Panjan
and
A.
Anders
, “
Plasma potential of a moving ionization zone in DC magnetron sputtering
,”
J. Appl. Phys.
121
,
063302
(
2017
).
33.
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
, “
On sheath energization and Ohmic heating in sputtering magnetrons
,”
Plasma Sources Sci. Technol.
22
,
045005
(
2013
).
34.
A.
Anders
, “
Localized heating of electrons in ionization zones: Going beyond the Penning–Thornton paradigm in magnetron sputtering
,”
Appl. Phys. Lett.
105
,
244104
(
2014
).
35.
N.
Brenning
,
J. T.
Gudmundsson
,
D.
Lundin
,
T.
Minea
,
M. A.
Raadu
, and
U.
Helmersson
, “
The role of Ohmic heating in dc magnetron sputtering
,”
Plasma Sources Sci. Technol.
25
,
065024
(
2016
).
36.
G.
Janes
and
R.
Lowder
, “
Anomalous electron diffusion and ion acceleration in a low-density plasma
,”
Phys. Fluids
9
,
1115
(
1966
).
37.
A.
Kozyrev
,
N.
Sochugov
,
K.
Oskomov
,
A.
Zakharov
, and
A.
Odivanova
, “
Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge
,”
Plasma Phys. Rep.
37
,
621
(
2011
).
38.
A.
Anders
,
P.
Ni
, and
A.
Rauch
, “
Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering
,”
J. Appl. Phys.
111
,
053304
(
2012
).
39.
A. P.
Ehiasarian
,
A.
Hecimovic
,
T.
de los Arcos
,
R.
New
,
V.
Schulz-von der Gathen
,
M.
Böke
, and
J.
Winter
, “
High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization
,”
Appl. Phys. Lett.
100
,
114101
(
2012
).
40.
A.
Hecimovic
,
V.
Schulz-von der Gathen
,
M.
Böke
,
A.
von Keudell
, and
J.
Winter
, “
Spoke transitions in HiPIMS discharges
,”
Plasma Sources Sci. Technol.
24
,
045005
(
2015
).
41.
A.
Hecimovic
,
C.
Maszl
,
V.
Schulz-von der Gathen
,
M.
Böke
, and
A.
von Keudell
, “
Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium
,”
Plasma Sources Sci. Technol.
25
,
035001
(
2016
).
42.
M.
Panjan
,
S.
Loquai
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Non-uniform plasma distribution in dc magnetron sputtering: Origin, shape and structuring of spokes
,”
Plasma Sources Sci. Technol.
24
,
065010
(
2015
).
43.
A. V.
Phelps
, See http://jila.colorado.edu/~avp/collision_data/electronneutral/ELECTRON.TXT for Compilation of electron cross sections,
2005
.
44.
L. M.
Biberman
,
V. S.
Vorobev
, and
I. T.
Yakubov
,
Kinetics of Nonequilibrium Low-Temperature Plasma (in Russian)
(
Nauka
,
Moscow
,
1982
).
45.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1991
).
46.
S. M.
Rossnagel
, “
Gas density reduction effects in magnetrons
,”
J. Vac. Sci. Technol. A
6
,
19
(
1988
).
47.
W. D.
Hoffman
, “
A sputtering wind
,”
J. Vac. Sci. Technol. A
3
,
561
(
1985
).
48.
D.
Güttler
,
B.
Abendroth
,
R.
Grötzschel
,
W.
Möller
, and
D.
Depla
, “
Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation
,”
Appl. Phys. Lett.
85
,
6134
(
2004
).
49.
D.
Depla
and
R.
De Gryse
, “
Target poisoning during reactive magnetron sputtering: Part I: The influence of ion implantation
,”
Surf. Coat. Technol.
183
,
184
(
2004
).
50.
D.
Depla
and
R.
De Gryse
, “
Target poisoning during reactive magnetron sputtering: Part II: The influence of chemisorption and gettering
,”
Surf. Coat. Technol.
183
,
190
(
2004
).
51.
D.
Depla
,
S.
Mahieu
, and
R. D.
Gryse
, “
Depositing aluminum oxide: A case study of reactive magnetron sputtering
,” in
Reactive Sputter Deposition
, edited by
D.
Depla
and
S.
Mahieu
(
Springer
,
2008
), p.
153
.
52.
D.
Depla
,
S.
Heirwegh
,
S.
Mahieu
, and
R. D.
Gryse
, “
Towards a more complete model for reactive magnetron sputtering
,”
J. Phys. D: Appl. Phys.
40
,
1957
(
2007
).
53.
W.
Möller
,
S.
Parascandola
,
T.
Telbizova
,
R.
Günzel
, and
E.
Richter
, “
Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminum
,”
Surf. Coat. Technol.
136
,
73
(
2001
).
54.
D.
Güttler
,
R.
Grötzschel
, and
W.
Möller
, “
Lateral variation of target poisoning during reactive magnetron sputtering
,”
Appl. Phys. Lett.
90
,
263502
(
2007
).
55.
T.
Kubart
,
O.
Kappertz
,
T.
Nyberg
, and
S.
Berg
, “
Dynamic behaviour of the reactive sputtering process
,”
Thin Solid Films
515
,
421
(
2006
).
56.
D.
Depla
,
S.
Mahieu
, and
J. E.
Greene
, in
Handbook of Deposition Technologies for Films and Coatings
, 3rd. ed., edited by
P. M.
Martin
(
William Andrew
,
2010
), p.
253
.
57.
D.
Depla
,
S.
Mahieu
, and
R.
De Gryse
, “
Magnetron sputter deposition: Linking discharge voltage with target properties
,”
Thin Solid Films
517
,
2825
(
2009
).
58.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
, “
Control of reactive sputtering processes
,”
Thin Solid Films
491
,
1
(
2005
).
59.
S.
Berg
,
H. O.
Blom
,
T.
Larsson
, and
C.
Nender
, “
Modeling of reactive sputtering of compound materials
,”
J. Vac. Sci. Technol. A
5
,
202
(
1987
).
60.
F. G.
Cougnon
,
K.
Strijckmans
,
R.
Schelfhout
, and
D.
Depla
, “
Hysteresis behavior during facing target magnetron sputtering
,”
Surf. Coat. Technol.
294
,
215
(
2016
).
61.
K.
Strijckmans
,
W. P.
Leroy
,
R.
De Gryse
, and
D.
Depla
, “
Modeling reactive magnetron sputtering: Fixing the parameter set
,”
Surf. Coat. Technol.
206
,
3666
(
2012
).
62.
D. J.
Christie
, “
Target material pathways model for high power pulsed magnetron sputtering
,”
J. Vac. Sci. Technol. A
23
,
330
(
2005
).
63.
T.
Kozák
and
J.
Vlček
, “
A parametric model for reactive high-power impulse magnetron sputtering of films
,”
J. Phys. D: Appl. Phys.
49
,
055202
(
2016
).
64.
J.
Musil
and
P.
Baroch
, “
Discharge in dual magnetron sputtering system
,”
IEEE Trans. Plasma Sci.
33
,
338
(
2005
).
65.
V.
Kirchhoff
,
T.
Kopte
,
T.
Winkler
,
M.
Schulze
, and
P.
Wiedemuth
, “
Dual magnetron sputtering (DMS) system with sine-wave power supply for large-area coating
,”
Surf. Coat. Technol.
98
,
828
(
1998
).
66.
A.
Belkind
,
Z.
Zhao
,
G.
Carter
,
McDonough
,
G.
Roche
, and
R.
Scholl
, “
Reactive sputtering using a dual-anode magnetron system
,” in
44th Annual Technical Conference Proceedings, Philadelphia
(Society of Vacuum Coaters,
2001
).
67.
G.
Teschner
,
F.
Milde
, and
J.
Strümpfel
, “
Dual anode magnetron sputtering
,” in
50th Annual Technical Conference Proceedings
(Society of Vacuum Coaters,
2007
).
68.
S.
Mráz
and
J. M.
Schneider
, “
Energy distribution of O- ions during reactive magnetron sputtering
,”
Appl. Phys. Lett.
89
,
051502
(
2006
).
69.
T.
Jäger
,
Y. E.
Romanyuk
,
A. N.
Tiwari
, and
A.
Anders
, “
Controlling ion fluxes during reactive sputter-deposition of SnO2:F
,”
J. Appl. Phys.
116
,
033301
(
2014
).
70.
T.
Welzel
and
K.
Ellmer
, “
Negative oxygen ion formation in reactive magnetron sputtering processes for transparent conductive oxides
,”
J. Vac. Sci. Technol. A
30
,
061306
(
2012
).
71.
A.
Anders
, “
Physics of arcing, and implications to sputter deposition
,”
Thin Solid Films
502
,
22
(
2006
).
72.
A.
Anders
,
Cathodic Arcs: From Fractal Spots to Energetic Condensation
(
Springer
,
New York
,
2008
).
73.
D.
Drescher
,
J.
Koskinen
,
H.-J.
Scheibe
, and
A.
Mensch
, “
A model for particle growth in arc deposited amorphous carbon films
,”
Diamond Relat. Mater.
7
,
1375
(
1998
).
74.
A.
Gilewicz
,
P.
Chmielewska
,
D.
Murzynski
,
E.
Dobruchowska
, and
B.
Warcholinski
, “
Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions
,”
Surf. Coat. Technol.
299
,
7
(
2016
).
75.
H. W.
Wang
,
M. M.
Stack
,
S. B.
Lyon
,
P.
Hovsepian
, and
W. D.
Munz
, “
Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry
,”
Surf. Coat. Technol.
135
,
82
(
2000
).
76.
P.
Panjan
,
P.
Gselman
,
D.
Kek-Merl
,
M.
Čekada
,
M.
Panjan
,
G.
Dražić
,
T.
Bončina
, and
F.
Zupanič
, “
Growth defect density in PVD hard coatings prepared by different deposition techniques
,”
Surf. Coat. Technol.
237
,
349
(
2013
).
77.
S.
Schiller
,
K.
Goedicke
,
J.
Reschke
,
V.
Kirchhoff
,
S.
Schneider
, and
F.
Milde
, “
Pulsed magnetron sputter technology
,”
Surf. Coat. Technol.
61
,
331
(
1993
).
78.
A.
Belkind
,
A.
Freilich
, and
R.
Scholl
, “
Electrical dynamics of pulsed plasmas
,” in
41st Annual Technical Conference Proceedings, Boston
(Society of Vacuum Coaters,
1998
), p.
321
.
79.
A.
Hemberg
,
S.
Konstantinidis
,
F.
Renaux
,
J. P.
Dauchot
, and
R.
Snyders
, “
Ion flux-film structure relationship during magnetron sputtering of WO3
,”
Eur. Phys. J. Appl. Phys.
56
,
24016
(
2011
).
80.
N.
Hosokawa
,
T.
Tsukada
, and
T.
Misumi
, “
Self-sputtering phenomena in high-rate coaxial cylindrical magnetron sputtering
,”
J. Vac. Sci. Technol.
14
,
143
(
1977
).
81.
V.
Kouznetsov
,
K.
Macak
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
, “
A novel pulsed magnetron sputter technique utilizing very high target power densities
,”
Surf. Coat. Technol.
122
,
290
(
1999
).
82.
A.
Anders
,
J.
Andersson
, and
A.
Ehiasarian
, “
Erratum: “High power impulse magnetron sputtering: Current–voltage–time characteristics indicate the onset of sustained self-sputtering [J. Appl. Phys. 102, 113303 (2007)]
,”
J. Appl. Phys.
103
,
039901
(
2008
).
83.
A.
Anders
,
J.
Andersson
, and
A.
Ehiasarian
, “
High power impulse magnetron sputtering: Current–voltage–time characteristics indicate the onset of sustained self-sputtering
,”
J. Appl. Phys.
102
,
113303
(
2007
).
84.
A.
Anders
,
J.
Čapek
,
M.
Hála
, and
L.
Martinu
, “
The 'recycling trap': A generalized explanation of discharge runaway in high power impulse magnetron sputtering
,”
J. Phys. D: Appl. Phys.
45
,
012003
(
2012
).
85.
S.
Ashida
,
C.
Lee
, and
M. A.
Lieberman
, “
Spatially averaged (global) model of time modulated high density argon plasmas
,”
J. Vac. Sci. Technol. A
13
,
2498
(
1995
).
86.
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
, “
On the road to self-sputtering in high power impulse magnetron sputtering: Particle balance and discharge characteristics
,”
Plasma Sources Sci. Technol.
23
,
025017
(
2014
).
87.
M. A.
Raadu
,
I.
Axnäs
,
J. T.
Gudmundsson
,
C.
Huo
, and
N.
Brenning
, “
An ionization region model for high-power impulse magnetron sputtering discharges
,”
Plasma Sources Sci. Technol.
20
,
065007
(
2011
).
88.
C.
Huo
,
M. A.
Raadu
,
D.
Lundin
,
J. T.
Gudmundsson
,
A.
Anders
, and
N.
Brenning
, “
Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses
,”
Plasma Sources Sci. Technol.
21
,
045004
(
2012
).
89.
J.
Andersson
,
P.
Ni
, and
A.
Anders
, “
Smoothing of discharge inhomogeneities at high currents in gasless high power impulse magnetron sputtering
,”
IEEE Trans. Plasma Sci.
42
,
2856
(
2014
).
90.
A.
von Keudell
,
A.
Hecimovic
, and
C.
Maszl
, “
Control of high power pulsed magnetron discharge by monitoring the current voltage characteristics
,”
Contrib. Plasma Phys.
56
,
918
(
2016
).
91.
A.
Anders
, “
Self-organization and self-limitation in high power impulse magnetron sputtering
,”
Appl. Phys. Lett.
100
,
224104
(
2012
).
92.
Y.
Yang
,
J.
Liu
,
L.
Liu
, and
A.
Anders
, “
Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering
,”
Appl. Phys. Lett.
105
,
254101
(
2014
).
93.
M.
Hála
,
O.
Zabeida
,
B.
Baloukas
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Time- and species-resolved plasma imaging as a new diagnostic approach for HiPIMS discharge characterization
,”
IEEE Trans. Plasma Sci.
38
,
3035
(
2010
).
94.
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Dynamics of HiPIMS discharge operated in oxygen
,”
IEEE Trans. Plasma Sci.
39
,
2582
(
2011
).
95.
J.
Andersson
,
P.
Ni
, and
A.
Anders
, “
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
,”
Appl. Phys. Lett.
103
,
054104
(
2013
).
96.
A.
Ehiasarian
, in
Plasma Surface Engineering Research and Its Practical Applications
, edited by
R.
Wei
(
Research Signpost
,
Kerala, India
,
2008
), p.
35
.
97.
J.
Bohlmark
,
M.
Ostbye
,
M.
Lattemann
,
H.
Ljungcrantz
,
T.
Rosell
, and
U.
Helmersson
, “
Guiding the deposition flux in an ionized magnetron discharge
,”
Thin Solid Films
515
,
1928
(
2006
).
98.
I.-L.
Velicu
,
V.
Tiron
,
C.
Porosnicu
,
I.
Burducea
,
N.
Lupu
,
G.
Stoian
,
G.
Popa
, and
D.
Munteanu
, “
Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach
,”
Appl. Surf. Sci.
(published online).
99.
Y.
Yang
,
K.
Tanaka
,
J.
Liu
, and
A.
Anders
, “
Ion energies in high power impulse magnetron sputtering with and without localized ionization zones
,”
Appl. Phys. Lett.
106
,
124102
(
2015
).
100.
M.
Panjan
,
R.
Franz
, and
A.
Anders
, “
Azimuthally asymmetric particle fluxes in sputtering magnetrons, and their amplification by ionization zones in high power impulse magnetron sputtering
,”
Plasma Sources Sci. Technol.
23
,
025007
(
2014
).
101.
C.
Li
,
X.
Tian
,
C.
Gong
, and
J.
Xu
, “
The improvement of high power impulse magnetron sputtering performance by an external unbalanced magnetic field
,”
Vacuum
133
,
98
(
2016
).
102.
J.
Vlček
,
P.
Kudláček
,
K.
Burcalová
, and
J.
Musil
, “
High-power pulsed sputtering using a magnetron with enhanced plasma confinement
,”
J. Vac. Sci. Technol. A
25
,
42
(
2007
).
103.
J.
Čapek
,
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field
,”
J. Appl. Phys.
111
,
023301
(
2012
).
104.
P.
Raman
,
I. A.
Shchelkanov
,
J.
McLain
, and
D. N.
Ruzic
, “
High power pulsed magnetron sputtering: A method to increase deposition rate
,”
J. Vac. Sci. Technol. A
33
,
031304
(
2015
).
105.
D.
Horwat
and
A.
Anders
, “
Compression and strong rarefaction in high power impulse magnetron sputtering discharges
,”
J. Appl. Phys.
108
,
123306
(
2010
).
106.
M.
Palmucci
,
N.
Britun
,
S.
Konstantinidis
, and
R.
Snyders
, “
Rarefaction windows in a high-power impulse magnetron sputtering plasma
,”
J. Appl. Phys.
114
,
113302
(
2013
).
107.
A. P.
Ehiasarian
,
W.-D.
Münz
,
L.
Hultman
, and
U.
Helmersson
, “
CrN deposition by reactive high power density pulsed magnetron sputtering
,” in
45th Annual Technical Conference Proceedings
(
Society of Vacuum Coaters
,
2002
), p.
328
.
108.
M.
Lattemann
,
A. P.
Ehiasarian
,
J.
Bohlmark
,
P. A. O.
Persson
, and
U.
Helmersson
, “
Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel
,”
Surf. Coat. Technol.
200
,
6495
(
2006
).
109.
W.-D.
Münz
,
D.
Schulze
, and
F. J. M.
Hauzer
, “
A new method for hard coatings—ABS (arc bond sputtering)
,”
Surf. Coat. Technol.
50
,
169
(
1992
).
110.
A. P.
Ehiasarian
,
W. D.
Munz
,
L.
Hultman
,
U.
Helmersson
, and
I.
Petrov
, “
High power pulsed magnetron sputtered CrNx films
,”
Surf. Coat. Technol.
163–164
,
267
(
2003
).
111.
J. T.
Gudmundsson
,
D.
Lundin
,
N.
Brenning
,
M. A.
Raadu
,
C.
Huo
, and
T. M.
Minea
, “
An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge
,”
Plasma Sources Sci. Technol.
25
,
065004
(
2016
).
112.
F.
Magnus
,
O. B.
Sveinsson
,
S.
Olafsson
, and
J. T.
Gudmundsson
, “
Current–voltage–time characteristics of the reactive Ar/N2 high power impulse magnetron sputtering discharge
,”
J. Appl. Phys.
110
,
083306
(
2011
).
113.
F.
Magnus
,
T. K.
Tryggvason
,
S.
Olafsson
, and
J. T.
Gudmundsson
, “
Current–voltage–time characteristics of the reactive Ar/O2 high power impulse magnetron sputtering discharge
,”
J. Vac. Sci. Technol. A
30
,
050601
(
2012
).
114.
E.
Wallin
and
U.
Helmersson
, “
Hysteresis-free reactive high power impulse magnetron sputtering
,”
Thin Solid Films
516
,
6398
(
2008
).
115.
M.
Audronis
and
V.
Bellido-Gonzalez
, “
Hysteresis behaviour of reactive high power impulse magnetron sputtering
,”
Thin Solid Films
518
,
1962
(
2010
).
116.
T.
Kubart
,
M.
Aiempanakit
,
J.
Andersson
,
T.
Nyberg
,
S.
Berg
, and
U.
Helmersson
, “
Studies of hysteresis effect in reactive HiPIMS deposition of oxides
,”
Surf. Coat. Technol.
205
, Supplement 2,
S303
(
2011
).
117.
W.
Möller
,
W.
Eckstein
, and
J. P.
Biersack
, “
TRIDYN-binary collision simulation of atomic collisions and dynamic composition changes in solids
,”
Comput. Phys. Commun.
51
,
355
(
1988
).
118.
T.
Kubart
and
J.
Andersson
, “
Modelling of target effects in reactive HIPIMS
,”
IOP Conf. Ser.: Mater. Sci. Eng.
39
,
012008
(
2012
).
119.
M.
Hála
,
J.
Čapek
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies
,”
J. Phys. D: Appl. Phys.
45
,
055204
(
2012
).
120.
M.
Hala
,
N.
Viau
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Dynamics of reactive high-power impulse magnetron sputtering discharge studied by time- and space-resolved optical emission spectroscopy and fast imaging
,”
J. Appl. Phys.
107
,
043305
(
2010
).
121.
S.
Loquai
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Flash post-discharge emission in a reactive HiPIMS process
,”
Appl. Phys. Lett.
109
,
114101
(
2016
).
122.
R.
Ganesan
,
B.
Treverrow
,
P.
Denniss
,
D. G.
McCulloch
,
D. R.
McKenzie
, and
M. M. M.
Bilek
, “
Pulsed external magnetic fields increase the deposition rate in reactive HiPIMS while preserving stoichiometry: An application to amorphous HfO2
,”
J. Appl. Phys.
120
,
103301
(
2016
).
123.
M.
Bowes
and
J. W.
Bradley
, “
Inert gas effects on the deposition rate of TiO2 during reactive HiPIMS
,”
Surf. Coat. Technol.
250
,
2
(
2014
).
124.
A.
Aijaz
,
S.
Louring
,
D.
Lundin
,
T.
Kubart
,
J.
Jensen
,
K.
Sarakinos
, and
U.
Helmersson
, “
Synthesis of hydrogenated diamondlike carbon thin films using neon–acetylene based high power impulse magnetron sputtering discharges
,”
J. Vac. Sci. Technol. A
34
,
061504
(
2016
).
125.
S.
Shayestehaminzadeh
,
U. B.
Arnalds
,
R. L.
Magnusson
, and
S.
Olafsson
, “
Observation of a periodic runaway in the reactive Ar/O2 high power impulse magnetron sputtering discharge
,”
AIP Adv.
5
,
117240
(
2015
).
126.
A.
Anders
and
J.
Brown
, “
A plasma lens for magnetron sputtering
,”
IEEE Trans. Plasma Sci.
39
,
2528
(
2011
).
127.
A.
Anders
, U.S. patent No. 8,574,410 B2,
2013
.
128.
A.
Anders
, U.S. patent No. 9,455,057 B2,
2016
.
129.
A.
Anders
, “
Metal plasma immersion ion implantation and deposition: A review
,”
Surf
. Coat. Technol.
93
,
158
(
1997
).
130.
I. G.
Brown
,
X.
Godechot
, and
K. M.
Yu
, “
Novel metal ion surface modification technique
,”
Appl. Phys. Lett.
58
,
1392
(
1991
).
131.
A.
Anders
,
N.
Pasaja
, and
S.
Sansongsiri
, “
Filtered cathodic arc deposition with ion-species-selective bias
,”
Rev. Sci. Instrum.
78
,
063901
(
2007
).
132.
G.
Greczynski
,
J.
Lu
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
,
S.
Bolz
,
W.
Kolker
,
C.
Schiffers
,
O.
Lemmer
, and
L.
Hultman
, “
Metal versus rare-gas ion irradiation during Ti1-xAlxN film growth by hybrid high power pulsed magnetron/DC magnetron co-sputtering using synchronized pulsed substrate bias
,”
J. Vac. Sci. Technol. A
30
,
061504
(
2012
).
133.
G.
Greczynski
and
L.
Hultman
, “
Time and energy resolved ion mass spectroscopy studies of the ion flux during high power pulsed magnetron sputtering of Cr in Ar and Ar/N2 atmospheres
,”
Vacuum
84
,
1159
(
2010
).
134.
R.
Franz
,
C.
Clavero
,
J.
Kolbeck
, and
A.
Anders
, “
Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth
,”
Plasma Sources Sci. Technol.
25
,
015022
(
2016
).
135.
J.
Lin
,
J. J.
Moore
,
W. D.
Sproul
,
B.
Mishra
,
J. A.
Rees
,
Z.
Wu
,
R.
Chistyakov
, and
B.
Abraham
, “
Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering
,”
Surf. Coat. Technol.
203
,
3676
(
2009
).
136.
F.
Papa
,
H.
Gerdes
,
R.
Bandorf
,
A. P.
Ehiasarian
,
I.
Kolev
,
G.
Braeuer
,
R.
Tietema
, and
T.
Krug
, “
Deposition rate characteristics for steady state high power impulse magnetron sputtering (HIPIMS) discharges generated with a modulated pulsed power (MPP) generator
,”
Thin Solid Films
520
,
1559
(
2011
).
137.
J.
Lin
,
W. D.
Sproul
,
J. J.
Moore
,
S.
Lee
, and
S.
Myers
, “
High rate deposition of thick CrN and Cr2N coatings using modulated pulse power (MPP) magnetron sputtering
,”
Surf. Coat. Technol.
205
,
3226
(
2011
).
138.
J.
Lin
,
B.
Wang
,
W. D.
Sproul
,
Y.
Ou
, and
I.
Dahan
, “
Anatase and rutile TiO2 films deposited by arc-free deep oscillation magnetron sputtering
,”
J. Phys. D: Appl. Phys.
46
,
084008
(
2013
).
139.
J.
Lin
and
W. D.
Sproul
, “
Structure and properties of Cr2O3 coatings deposited using DCMS, PDCMS, and DOMS
,”
Surf. Coat. Technol.
276
,
70
(
2015
).
140.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
, “
High power impulse magnetron sputtering discharge
,”
J. Vac. Sci. Technol. A
30
,
030801
(
2012
).
141.
R.
Franz
,
C.
Clavero
,
R.
Bolat
,
R.
Mendelsberg
, and
A.
Anders
, “
Observation of multiple charge states and high ion energies in high-power impulse magnetron sputtering (HiPIMS) and burst HiPIMS using a LaB6 target
,”
Plasma Sources Sci. Technol.
23
,
035001
(
2014
).
142.
P. M.
Barker
,
S.
Konstantinidis
,
E.
Lewin
,
N.
Britun
, and
J.
Patscheider
, “
An investigation of c-HiPIMS discharges during titanium deposition
,”
Surf. Coat. Technol.
258
,
631
(
2014
).
143.
K.
Bobzin
,
T.
Brögelmann
,
N. C.
Kruppe
, and
M.
Engels
, “
Influence of dcMS and HPPMS in a dcMS/HPPMS hybrid process on plasma and coating properties
,”
Thin Solid Films
620
,
188
(
2016
).
144.
M. S.
Kang
,
T.-g.
Wang
,
J. H.
Shin
,
R.
Nowak
, and
K. H.
Kim
, “
Synthesis and properties of Cr–Al–Si–N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering
,”
Trans. Nonferrous Met. Soc. China
22
,
s729
(
2012
).
145.
W. D.
Sproul
,
P. J.
Rudnik
,
M. E.
Graham
, and
S. L.
Rohde
, “
High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system
,”
Surf. Coat. Technol.
43/44
,
270
(
1990
).
146.
K. E.
Cooke
,
J.
Hamsphire
,
W.
Southall
, and
D. G.
Teer
, “
The industrial application of pulsed DC bias power supplies in closed field unbalanced magnetron sputter ion plating
,”
Surf. Coat. Technol.
177
,
789
(
2004
).
147.
Y. P.
Purandare
,
A. P.
Ehiasarian
, and
P.
Eh Hovsepian
, “
Target poisoning during CrN deposition by mixed high power impulse magnetron sputtering and unbalanced magnetron sputtering technique
,”
J. Vac. Sci. Technol. A
34
,
041502
(
2016
).
148.
I. V.
Svadkovski
,
D. A.
Golosov
, and
S. M.
Zavatskiy
, “
Characterisation parameters for unbalanced magnetron sputtering systems
,”
Vacuum
68
,
283
(
2002
).
149.
D.
Carter
,
H.
Walde
, and
K.
Nauman
, “
Managing arcs in large area sputtering applications
,”
Thin Solid Films
520
,
4199
(
2012
).
150.
R.
Ganesan
,
B. J.
Murdoch
,
B.
Treverrow
,
A. E.
Ross
,
I. S.
Falconer
,
A.
Kondyurin
,
D. G.
McCulloch
,
J. G.
Partridge
,
D. R.
McKenzie
, and
M. M. M.
Bilek
, “
The role of pulse length in target poisoning during reactive HiPIMS: Application to amorphous HfO2
,”
Plasma Sources Sci. Technol.
24
,
035015
(
2015
).
151.
R.
Ganesan
,
B.
Treverrow
,
B.
Murdoch
,
D.
Xie
,
A. E.
Ross
,
J. G.
Partridge
,
I. S.
Falconer
,
D. G.
McCulloch
,
D. R.
McKenzie
, and
M. M. M.
Bilek
, “
Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium
,”
J. Phys. D: Appl. Phys.
49
,
245201
(
2016
).
152.
T.
Shimizu
,
M.
Villamayor
,
D.
Lundin
, and
U.
Helmersson
, “
Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride
,”
J. Phys. D: Appl. Phys.
49
,
065202
(
2016
).
153.
V.
Tiron
and
L.
Sirghi
, “
Tuning the band gap and nitrogen content of ZnOxNy thin films deposited by reactive HiPIMS
,”
Surf. Coat. Technol.
282
,
103
(
2015
).
154.
D.
Benzeggouta
,
M. C.
Hugon
, and
J.
Bretagne
, “
Study of a HPPMS discharge in Ar/O2 mixture: II. Plasma optical emission and deposited RuOx film properties
,”
Plasma Sources Sci. Technol.
18
,
045026
(
2009
).
155.
W.-Y.
Wu
,
B.-H.
Hsiao
,
P.-H.
Chen
,
W.-C.
Chen
,
C.-T.
Ho
, and
C.-L.
Chang
, “
CrNx films prepared using feedback-controlled high power impulse magnetron sputter deposition
,”
J. Vac. Sci. Technol. A
32
,
02B115
(
2014
).
156.
D.
Lundin
,
M.
Čada
, and
Z.
Hubička
, “
Time-resolved ion flux and impedance measurements for process characterization in reactive high-power impulse magnetron sputtering
,”
J. Vac. Sci. Technol. A
34
,
041305
(
2016
).
157.
N.
Britun
,
T.
Minea
,
S.
Konstantinidis
, and
R.
Snyders
, “
Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges: A review
,”
J. Phys. D: Appl. Phys.
47
,
224001
(
2014
).
158.
J.
Vlček
,
J.
Rezek
,
J.
Houška
,
T.
Kozák
, and
J.
Kohout
, “
Benefits of the controlled reactive high-power impulse magnetron sputtering of stoichiometric ZrO2 films
,”
Vacuum
114
,
131
(
2015
).
159.
G.
Greczynski
,
J.
Lu
,
J.
Jensen
,
S.
Bolz
,
W.
Kölker
,
C.
Schiffers
,
O.
Lemmer
,
J. E.
Greene
, and
L.
Hultman
, “
A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering
,”
Surf. Coat. Technol.
257
,
15
(
2014
).
160.
A. P.
Ehiasarian
,
A.
Vetushka
,
Y. A.
Gonzalvo
,
G.
Safran
,
L.
Szekely
, and
P. B.
Barna
, “
Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films
,”
J. Appl. Phys.
109
,
104314
(
2011
).
161.
P. E.
Hovsepian
,
A. P.
Ehiasarian
, and
I.
Petrov
, “
Structure evolution and properties of TiAlCN/VCN coatings deposited by reactive HIPIMS
,”
Surf. Coat. Technol.
257
,
38
(
2014
).
162.
M.
Lattemann
,
U.
Helmersson
, and
J. E.
Greene
, “
Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias
,”
Thin Solid Films
518
,
5978
(
2010
).
163.
F.
Magnus
,
A. S.
Ingason
,
O. B.
Sveinsson
,
S.
Olafsson
, and
J. T.
Gudmundsson
, “
Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering
,”
Thin Solid Films
520
,
1621
(
2011
).
164.
S.
Shayestehaminzadeh
,
T. K.
Tryggvason
,
L.
Karlsson
,
S.
Olafsson
, and
J. T.
Gudmundsson
, “
The properties of TiN ultra-thin films grown on SiO2 substrate by reactive high power impulse magnetron sputtering under various growth angles
,”
Thin Solid Films
548
,
354
(
2013
).
165.
S.
Shayestehaminzadeh
,
E. B.
Thorsteinsson
,
D.
Primetzhofer
,
F.
Magnus
, and
S.
Olafsson
, “
Epitaxial and textured TiN thin films grown on MgO(1 0 0) by reactive HiPIMS: The impact of charging on epitaxial to textured growth crossover
,”
J. Phys. D: Appl. Phys.
49
,
455301
(
2016
).
166.
G.
Greczynski
,
J.
Jensen
, and
L.
Hultman
, “
CrNx films prepared by DC magnetron sputtering and high-power pulsed magnetron sputtering: A comparative study
,”
IEEE Trans. Plasma Sci.
38
,
3046
(
2010
).
167.
G.
Greczynski
,
J.
Jensen
,
J.
Böhlmark
, and
L.
Hultman
, “
Microstructure control of CrNx films during high power impulse magnetron sputtering
,”
Surf. Coat. Technol.
205
,
118
(
2010
).
168.
J.
Lin
,
W. D.
Sproul
,
J. J.
Moore
,
Z. L.
Wu
, and
S. L.
Lee
, “
Effect of negative substrate bias voltage on the structure and properties of CrN films deposited by modulated pulsed power (MPP) magnetron sputtering
,”
J. Phys. D: Appl. Phys.
44
,
425305
(
2011
).
169.
F.
Ferreira
,
J. C.
Oliveira
, and
A.
Cavaleiro
, “
CrN thin films deposited by HiPIMS in DOMS mode
,”
Surf. Coat. Technol.
291
,
365
(
2016
).
170.
K.
Bobzin
,
N.
Bagcivan
,
S.
Theiß
,
J.
Trieschmann
,
R. H.
Brugnara
,
S.
Preissing
, and
A.
Hecimovic
, “
Influence of Ar/Kr ratio and pulse parameters in a Cr-N high power pulse magnetron sputtering process on plasma and coating properties
,”
J. Vac. Sci. Technol. A
32
,
021513
(
2014
).
171.
Y. P.
Purandare
,
A. P.
Ehiasarian
, and
P. E.
Hovsepian
, “
Structure and properties of ZrN coatings deposited by high power impulse magnetron sputtering technology
,”
J. Vac. Sci. Technol. A
29
,
011004
(
2011
).
172.
Y.
Purandare
,
A.
Ehiasarian
,
A.
Santana
, and
P.
Hovsepian
, “
ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques
,”
J. Vac. Sci. Technol. A
32
,
031507
(
2014
).
173.
J.-R.
Tsai
,
P.-C.
Juan
, and
P.-J.
Chen
, “
Characteristics of metal-gate metal-insulator-semiconductor capacitor with ZrN capping layer fabricated by high-power impulse magnetron sputtering
,”
Thin Solid Films
618
, Part A,
55
(
2016
).
174.
A.
Tayal
,
M.
Gupta
,
A.
Gupta
,
V.
Ganesan
,
L.
Behera
,
S.
Singh
, and
S.
Basu
, “
Study of magnetic iron nitride thin films deposited by high power impulse magnetron sputtering
,”
Surf. Coat. Technol.
275
,
264
(
2015
).
175.
L.
Mendizabal
,
R.
Bayón
,
E.
G-Berasategui
,
J.
Barriga
, and
J. J.
Gonzalez
, “
Effect of N2 flow rate on the microstructure and electrochemical behavior of TaNx films deposited by modulated pulsed power magnetron sputtering
,”
Thin Solid Films
610
,
1
(
2016
).
176.
A.
Guillaumot
,
F.
Lapostolle
,
C.
Dublanche-Tixier
,
J. C.
Oliveira
,
A.
Billard
, and
C.
Langlade
, “
Reactive deposition of Al-N coatings in Ar/N2 atmospheres using pulsed-DC or high power impulse magnetron sputtering discharges
,”
Vacuum
85
,
120
(
2010
).
177.
C.-T.
Chang
,
Y.-C.
Yang
,
J.-W.
Lee
, and
B.-S.
Lou
, “
The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering
,”
Thin Solid Films
57
,
161
(
2014
).
178.
K. A.
Aissa
,
A.
Achour
,
O.
Elmazria
,
Q.
Simon
,
M.
Elhosni
,
P.
Boulet
,
S.
Robert
, and
M. A.
Djouadi
, “
AlN films deposited by DC magnetron sputtering and high power impulse magnetron sputtering for SAW applications
,”
J. Phys. D: Appl. Phys.
48
,
145307
(
2015
).
179.
J.
Lin
and
R.
Chistyakov
, “
C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
,”
Appl. Surf. Sci.
396
,
129
(
2017
).
180.
M.
Junaid
,
D.
Lundin
,
J.
Palisaitis
,
C.-L.
Hsiao
,
V.
Darakchieva
,
J.
Jensen
,
P. O. A.
Persson
,
P.
Sandstrom
,
W.-J.
Lai
,
L.-C.
Chen
,
K.-H.
Chen
,
U.
Helmersson
,
L.
Hultman
, and
J.
Birch
, “
Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering
,”
J. Appl. Phys.
110
,
123519
(
2011
).
181.
S.
Schmidt
,
T.
Hänninen
,
C.
Goyenola
,
J.
Wissting
,
J.
Jensen
,
L.
Hultman
,
N.
Goebbels
,
M.
Tobler
, and
H.
Högberg
, “
SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the nitrogen content
,”
ACS Appl. Mater. Interfaces
8
,
20385−20395
(
2016
).
182.
H.
Elmkhah
,
T. F.
Zhang
,
A.
Abdollah-zadeh
,
K. H.
Kim
, and
F.
Mahboubi
, “
Surface characteristics for the TiAlN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages
,”
J. Alloys Compd.
688
, Part A,
820
(
2016
).
183.
G.
Greczynski
,
J.
Lu
,
M.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
, “
Selection of metal ion irradiation for controlling Ti1xAlxN alloy growth via hybrid HIPIMS/magnetron co-sputtering
,”
Vacuum
86
,
1036
(
2012
).
184.
G.
Greczynski
,
J.
Lu
,
M. P.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
, “
Role of Tin+ and Aln+ ion irradiation (n = 1, 2) during Ti1xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode
,”
Surf. Coat. Technol.
206
,
4202
(
2012
).
185.
Y.-C.
Hsiao
,
J.-W.
Lee
,
Y.-C.
Yang
, and
B.-S.
Lou
, “
Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering
,”
Thin Solid Films
549
,
281
(
2013
).
186.
M.
Wiesing
,
T.
d. l. Arcos
, and
G.
Grundmeier
, “
The thermal oxidation of TiAlN high power pulsed magnetron sputtering hard coatings as revealed by combined ion and electron spectroscopy,”
Adv. Mater. Interfaces
4
,
1600861
(
2017
).
187.
N.
Bagcivan
,
K.
Bobzin
,
G.
Grundmeier
,
M.
Wiesing
,
O.
Ozcan
,
C.
Kunze
, and
R. H.
Brugnara
, “
Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr,Al)N coatings
,”
Thin Solid Films
549
,
192
(
2013
).
188.
J.
Lin
,
B.
Wang
,
Y.
Ou
,
W. D.
Sproul
,
I.
Dahan
, and
J. J.
Moore
, “
Structure and properties of CrSiN nanocomposite coatings deposited by hybrid modulated pulsed power and pulsed DC magnetron sputtering
,”
Surf. Coat. Technol.
216
,
251
(
2013
).
189.
H.
Klostermann
,
F.
Fietzke
,
R.
Labitzke
,
T.
Modes
, and
O.
Zywitzki
, “
Zr-Nb-N hard coatings deposited by high power pulsed sputtering using different pulse modes
,”
Surf. Coat. Technol.
204
,
1076
(
2009
).
190.
Q.
Ma
,
L.
Li
,
Y.
Xu
,
J.
Gu
,
L.
Wang
, and
Y.
Xu
, “
Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS
,”
Appl. Surf. Sci.
392
,
826
(
2017
).
191.
K.
Bobzin
,
N.
Bagcivan
,
P.
Immich
,
S.
Bolz
,
H. G.
Fuß
, and
R.
Cremer
, “
Properties of (Ti,Al,Si)N coatings for high demanding metal cutting applications deposited by HPPMS in an industrial coating unit
,”
Plasma Processes Polym.
6
,
S124
(
2009
).
192.
T. F.
Zhang
,
Q. M.
Wang
,
J.
Lee
,
P.
Ke
,
R.
Nowak
, and
K. H.
Kim
, “
Nanocrystalline thin films synthesized from a Ti2AlN compound target by high power impulse magnetron sputtering technique
,”
Surf. Coat. Technol.
212
,
199
(
2012
).
193.
P. E.
Hovsepian
,
A. P.
Ehiasarian
,
A.
Deeming
, and
C.
Schimpf
, “
VMeCN based nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technology
,”
Plasma Processes Polym.
4
,
S897
(
2007
).
194.
Y. X.
Ou
,
J.
Lin
,
S.
Tong
,
W. D.
Sproul
, and
M. K.
Lei
, “
Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed DC magnetron sputtering
,”
Surf. Coat. Technol.
293
,
21
(
2016
).
195.
Y. X.
Ou
,
J.
Lin
,
H. L.
Che
,
J. J.
Moore
,
W. D.
Sproul
, and
M. K.
Lei
, “
Mechanical and tribological properties of CrN/TiN superlattice coatings deposited by a combination of arc-free deep oscillation magnetron sputtering with pulsed dc magnetron sputtering
,”
Thin Solid Films
594
, Part A,
147
(
2015
).
196.
Y. X.
Ou
,
J.
Lin
,
S.
Tong
,
H. L.
Che
,
W. D.
Sproul
, and
M. K.
Lei
, “
Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering
,”
Appl. Surf. Sci.
351
,
332
(
2015
).
197.
P. E.
Hovsepian
,
A. P.
Ehiasarian
,
Y. P.
Purandare
,
B.
Biswas
,
F. J.
Pérez
,
M. I.
Lasanta
,
M. T.
de Miguel
,
A.
Illana
,
M.
Juez-Lorenzo
,
R.
Muelas
, and
A.
Agüero
, “
Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650 °C in pure steam environment
,”
Mater. Chem. Phys.
179
,
110
(
2016
).
198.
C.
Nouvellon
,
M.
Michiels
,
J. P.
Dauchot
,
C.
Archambeau
,
F.
Laffineur
,
E.
Silberberg
,
S.
Delvaux
,
R.
Cloots
,
S.
Konstantinidis
, and
R.
Snyders
, “
Deposition of titanium oxide films by reactive High Power Impulse Magnetron Sputtering (HiPIMS): Influence of the peak current value on the transition from metallic to poisoned regimes
,”
Surf. Coat. Technol.
206
,
3542
(
2012
).
199.
P. J.
Kelly
,
P. M.
Barker
,
S.
Ostovarpour
,
M.
Ratova
,
G. T.
West
,
I.
Iordanova
, and
J. W.
Bradley
, “
Deposition of photocatalytic titania coatings on polymeric substrates by HiPIMS
,”
Vacuum
86
,
1880
(
2012
).
200.
S.
Konstantinidis
,
J. P.
Dauchot
, and
M.
Hecq
, “
Titanium oxide thin films deposited by high-power impulse magnetron sputtering
,”
Thin Solid Films
515
,
1182
(
2006
).
201.
W.
Schönberger
,
H.
Bartzsch
,
S.
Schippel
, and
T.
Bachmann
, “
Deposition of rutile TiO2 films by pulsed and high power pulsed magnetron sputtering
,”
Surf. Coat. Technol.
293
,
16
(
2016
).
202.
E.
Lecoq
,
J.
Guillot
,
D.
Duday
,
J.-B.
Chemin
, and
P.
Choquet
, “
Elaboration of a wide range of TiO2 micro/nanostructures by high power impulse inverted cylindrical magnetron sputtering
,”
J. Phys D: Appl. Phys.
47
,
195201
(
2014
).
203.
D.
Benzeggouta
,
M. C.
Hugon
,
J.
Bretagne
, and
M.
Ganciu
, “
Study of a HPPMS discharge in Ar/O 2 mixture: I. Discharge characteristics with Ru cathode
,”
Plasma Sources Sci. Technol.
18
,
045025
(
2009
).
204.
J. P.
Fortier
,
B.
Baloukas
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Thermochromic VO2 thin films deposited by HiPIMS
,”
Sol. Energy Mater. Sol. Cells
125
,
291
(
2014
).
205.
S.
Loquai
,
B.
Baloukas
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
, “
HiPIMS-deposited thermochromic VO2 films with high environmental stability
,”
Sol. Energy Mater. Sol. Cells
160
,
217
(
2017
).
206.
T.
Lin
,
L.
Wang
,
X.
Wang
,
Y.
Zhang
, and
Y.
Yu
, “
Influence of bias voltage on microstructure and phase transition properties of VO2 thin film synthesized by HiPIMS
,”
Surf. Coat. Technol.
305
,
110
(
2016
).
207.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
, “
The reactive sputter deposition of aluminum oxide coatings using high power pulsed magnetron sputtering (HPPMS)
,” in
47th Annual Technical Conference Proceedings, Dallas, TX
(Society of Vacuum Coaters,
2004
), p.
96
.
208.
M.
Hála
,
R.
Vernhes
,
O.
Zabeida
,
E.
Bousser
,
J. E.
Klemberg-Sapieha
,
R.
Sargent
, and
L.
Martinu
, “
Growth and properties of high index Ta2O5 optical coatings prepared by HiPIMS and other methods
,”
Surf. Coat. Technol.
241
,
33
(
2014
).
209.
K.
Sarakinos
,
J.
Alami
,
C.
Klever
, and
M.
Wuttig
, “
Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide
,”
Surf. Coat. Technol.
202
,
5033
(
2008
).
210.
X.
Zhao
,
J.
Jin
,
J.-C.
Cheng
,
J.-W.
Lee
,
K.-H.
Wu
, and
K.-C.
Liu
, “
Effect of pulsed off-times on the reactive HiPIMS preparation of zirconia thin films
,”
Vacuum
118
,
38
(
2015
).
211.
S.
Sønderby
,
A.
Aijaz
,
U.
Helmersson
,
K.
Sarakinos
, and
P.
Eklund
, “
Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering
,”
Surf. Coat. Technol.
240
,
1
(
2014
).
212.
S.
Sønderby
,
B. H.
Christensen
,
K. P.
Almtoft
,
L. P.
Nielsen
, and
P.
Eklund
, “
Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes
,”
Surf. Coat. Technol.
281
,
150
(
2015
).
213.
S.
Kment
,
Z.
Hubicka
,
J.
Krysa
,
J.
Olejnicek
,
M.
Cada
,
I.
Gregora
,
M.
Zlamal
,
M.
Brunclikova
,
Z.
Remes
,
N.
Liu
,
L.
Wang
,
R.
Kirchgeorg
,
C. Y.
Lee
, and
P.
Schmuki
, “
High-power pulsed plasma deposition of hematite photoanode for PEC water splitting
,”
Catal. Today
230
,
8
(
2014
).
214.
S.
Konstantinidis
,
A.
Hemberg
,
J. P.
Dauchot
, and
M.
Hecq
, “
Deposition of zinc oxide layers by high-power impulse magnetron sputtering
,”
J. Vac. Sci. Technol. B
25
,
L19
(
2007
).
215.
J.
Vlček
,
A.
Belosludtsev
,
J.
Rezek
,
J.
Houška
,
J.
Čapek
,
R.
Čerstvý
, and
S.
Haviar
, “
High-rate reactive high-power impulse magnetron sputtering of hard and optically transparent HfO2 films
,”
Surf. Coat. Technol.
290
,
58
(
2016
).
216.
A.
Hemberg
,
J.-P.
Dauchot
,
R.
Snyders
, and
S.
Konstantinidis
, “
Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study
,”
J. Vac. Sci. Technol. A
30
,
040604
(
2012
).
217.
J.
Olejníček
,
M.
Brunclíková
,
Š.
Kment
,
Z.
Hubička
,
H.
Kmentová
,
P.
Kšírová
,
M.
Čada
,
M.
Zlámal
, and
J.
Krýsa
, “
WO3 thin films prepared by sedimentation and plasma sputtering
,”
Chem. Eng. J.
(published online).
218.
F.
Horstmann
,
V.
Sittinger
, and
B.
Szyszka
, “
Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering
,”
Thin Solid Films
517
,
3178
(
2009
).
219.
C.-H.
Wu
,
F.-C.
Yang
,
W.-C.
Chen
, and
C.-L.
Chang
, “
Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process
,”
Surf. Coat. Technol.
303
, Part A,
209
(
2016
).
220.
M.
Mickan
,
U.
Helmersson
,
H.
Rinnert
,
J.
Ghanbaja
,
D.
Muller
, and
D.
Horwat
, “
Room temperature deposition of homogeneous, highly transparent and conductive Al-doped ZnO films by reactive high power impulse magnetron sputtering
,”
Sol. Energy Mater. Sol. Cells
157
,
742
(
2016
).
221.
D.
Horwat
,
M.
Mickan
, and
W.
Chamorro
, “
New strategies for the synthesis of ZnO and Al-doped ZnO films by reactive magnetron sputtering at room temperature
,”
Phys. Status Solidi C
13
,
951
(
2016
).
222.
M.
Hála
,
R.
Vernhes
,
O.
Zabeida
,
J.-E.
Klemberg-Sapieha
, and
L.
Martinu
, “
Reactive HiPIMS deposition of SiO2/Ta2O5 optical interference filters
,”
J. Appl. Phys.
116
,
213302
(
2014
).
223.
K.
Bobzin
,
T.
Brögelmann
,
G.
Grundmeier
,
T.
de los Arcos
,
M.
Wiesing
, and
N. C.
Kruppe
, “
(Cr,Al)N/(Cr,Al)ON oxy-nitride coatings deposited by hybrid dcMS/HPPMS for plastics processing applications
,”
Surf. Coat. Technol.
308
,
394
(
2016
).
224.
T.
Hänninen
,
S.
Schmidt
,
J.
Jensen
,
L.
Hultman
, and
H.
Högberg
, “
Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor
,”
J. Vac. Sci. Technol. A
33
,
05E121
(
2015
).
225.
H.
Högberg
,
L.
Tengdelius
,
M.
Samuelsson
,
F.
Eriksson
,
E.
Broitman
,
J.
Lu
,
J.
Jensen
, and
L.
Hultman
, “
Reactive sputtering of δ-ZrH2 thin films by high power impulse magnetron sputtering and direct current magnetron sputtering
,”
J. Vac. Sci. Technol. A
32
,
041510
(
2014
).
226.
A.
Halbe
,
P.
Johnson
,
S.
Jackson
,
R.
Weiss
,
U.
Avachat
,
A.
Welsh
, and
A. P.
Ehiasarian
, “
High efficiency copper indium gallium diselenide (CIGS) by high power impulse magnetron sputtering (HIPIMS): A promising and scalable application in thin-film photovoltaics
,”
Mater. Res. Soc. Symp. Proc.
1210
,
1210_Q06_09
(
2009
).
227.
S.
Schmidt
,
C.
Goyenola
,
G. K.
Gueorguiev
,
J.
Jensen
,
G.
Greczynski
,
I. G.
Ivanov
,
Z.
Czigány
, and
L.
Hultman
, “
Reactive high power impulse magnetron sputtering of CFx thin films in mixed Ar/CF4 and Ar/C4F8 discharges
,”
Thin Solid Films
542
,
21
(
2013
).
228.
S.
Schmidt
,
Z.
Czigány
,
J.
Wissting
,
G.
Greczynski
,
E.
Janzén
,
J.
Jensen
,
I. G.
Ivanov
, and
L.
Hultman
, “
A comparative study of direct current magnetron sputtering and high power impulse magnetron sputtering processes for CNx thin film growth with different inert gases
,”
Diamond Relat. Mater.
64
,
13
(
2016
).
229.
T.
Kimura
,
H.
Kamata
,
S.
Nakao
, and
K.
Azuma
, “
Preparation of titanium-doped diamond-like carbon films with electrical conductivity using high power pulsed magnetron sputtering system with bipolar pulse voltage source for substrate
,”
IEEE Trans. Plasma Sci.
44
,
3083
(
2016
).

Supplementary Material

You do not currently have access to this content.