The microwave-absorbing properties of a heterostructure consisting of an ordered monolayer of porous glassy carbon spheres were experimentally and theoretically investigated in the Ka-band (26–37 GHz) frequency range. The electromagnetic response of such a “moth-eye”-like all-carbon metasurface at a normal incidence angle was modelled on the basis of long-wave approximation. Modelling parameters in the Ka-band were used to estimate and predict the absorption properties of monolayers in free space in the range 1–40 GHz. Experimental and theoretical results demonstrate that a metasurface based on porous glassy carbon spheres is an inert, lightweight, compact, and perfectly absorbing material for designing new effective microwave absorbers in various practically used frequency ranges.

1.
J. B.
Pendry
,
A. J.
Holden
,
D.
Robbins
, and
W.
Stewart
, “
Magnetism from conductors and enhanced nonlinear phenomena
,”
IEEE Trans. Microwave Theory Tech.
47
,
2075
2084
(
1999
).
2.
D. R.
Smith
,
W. J.
Padilla
,
D.
Vier
,
S. C.
Nemat-Nasser
, and
S.
Schultz
, “
Composite medium with simultaneously negative permeability and permittivity
,”
Phys. Rev. Lett.
84
,
4184
(
2000
).
3.
X.
Liu
,
K.
Fan
,
I. V.
Shadrivov
, and
W. J.
Padilla
, “
Experimental realization of a terahertz all-dielectric metasurface absorber
,”
Opt. Express
25
,
191
201
(
2017
).
4.
G.
Tondi
,
V.
Fierro
,
A.
Pizzi
, and
A.
Celzard
, “
Tannin-based carbon foams
,”
Carbon
47
,
1480
1492
(
2009
).
5.
F.
Moglie
,
D.
Micheli
,
S.
Laurenzi
,
M.
Marchetti
, and
V. M.
Primiani
, “
Electromagnetic shielding performance of carbon foams
,”
Carbon
50
,
1972
1980
(
2012
).
6.
D.
Bychanok
,
A.
Plyushch
,
K.
Piasotski
,
A.
Paddubskaya
,
S.
Voronovich
,
P.
Kuzhir
,
S.
Baturkin
,
A.
Klochkov
,
E.
Korovin
,
M.
Letellier
,
S.
Schaefer
,
A.
Szczurek
,
V.
Fierro
, and
A.
Celzard
, “
Electromagnetic properties of polyurethane template-based carbon foams in Ka-band
,”
Phys. Scr.
90
,
094019
(
2015
).
7.
A.
Szczurek
,
G.
Amaral-Labat
,
V.
Fierro
,
A.
Pizzi
,
E.
Masson
, and
A.
Celzard
, “
The use of tannin to prepare carbon gels. Part I: Carbon aerogels
,”
Carbon
49
,
2773
2784
(
2011
).
8.
M.
Inagaki
and
F.
Kang
,
Materials Science and Engineering of Carbon: Fundamentals
(
Butterworth-Heinemann
,
2014
), p.
298
.
9.
F.
Walsh
,
L.
Arenas
,
C.
Ponce de Leon
,
G.
Reade
,
I.
Whyte
, and
B.
Mellor
, “
The continued development of reticulated vitreous carbon as a versatile electrode material: Structure, properties and applications
,”
Electrochim. Acta
215
,
566
591
(
2016
).
10.
S. V. K. E.
Zhuravlev
and
K.
Dorozhkin
, “
Electromagnetic waves absorbing characteristics of composite material containing carbonyl iron particles
,”
Mater. Sci. Appl.
5
,
803
811
(
2014
).
11.
M.
Ipatov
,
V.
Zhukova
,
L. V.
Panina
, and
A.
Zhukov
, “
Ferromagnetic microwires composite metamaterials with tuneable microwave electromagnetic parameters
,”
PIERS Proc.
5
,
586
590
(
2009
).
12.
D.
Bychanok
,
S.
Li
,
A.
Sanchez-Sanchez
,
G.
Gorokhov
,
P.
Kuzhir
,
F.
Ogrin
,
A.
Pasc
,
T.
Ballweg
,
K.
Mandel
,
A.
Szczurek
,
V.
Fierro
, and
A.
Celzard
, “
Hollow carbon spheres in microwaves: Bio inspired absorbing coating
,”
Appl. Phys. Lett.
108
,
013701
(
2016
).
13.
M.-S.
Cao
,
W.-L.
Song
,
Z.-L.
Hou
,
B.
Wen
, and
J.
Yuan
, “
The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites
,”
Carbon
48
,
788
796
(
2010
).
14.
R.
Buchner
,
J.
Barthel
, and
J.
Stauber
, “
The dielectric relaxation of water between 0C and 35C
,”
Chem. Phys. Lett.
306
,
57
63
(
1999
).
15.
W.
Withayachumnankul
and
D.
Abbott
, “
Metamaterials in the terahertz regime
,”
IEEE Photonics J.
1
,
99
118
(
2009
).
16.
M. S.
Sarto
,
A. G.
D'Aloia
,
A.
Tamburrano
, and
G.
De Bellis
, “
Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for emc applications
,”
IEEE Trans. Electromagn. Compat.
54
,
17
27
(
2012
).
17.
Y.
Danlee
,
I.
Huynen
, and
C.
Bailly
, “
Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes
,”
Appl. Phys. Lett.
100
,
213105
(
2012
).
18.
D.
Bychanok
,
G.
Gorokhov
,
D.
Meisak
,
P.
Kuzhir
,
S. A.
Maksimenko
,
Y.
Wang
,
Z.
Han
,
X.
Gao
, and
H.
Yue
, “
Design of carbon nanotube-based broadband radar absorber for Ka-band frequency range
,”
Prog. Electromagn. Res.
53
,
9
16
(
2017
).
19.
C. L.
Holloway
,
E. F.
Kuester
,
J. A.
Gordon
,
J.
O'Hara
,
J.
Booth
, and
D. R.
Smith
, “
An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials
,”
IEEE Antennas Propag. Mag.
54
,
10
35
(
2012
).
20.
C. L.
Holloway
,
E. F.
Kuester
,
J.
Baker-Jarvis
, and
P.
Kabos
, “
A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix
,”
IEEE Trans. Antennas Propag.
51
,
2596
2603
(
2003
).
21.
S.
Kim
,
E. F.
Kuester
,
C. L.
Holloway
,
A. D.
Scher
, and
J.
Baker-Jarvis
, “
Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements
,”
IEEE Trans. Antennas Propag.
59
,
2226
2240
(
2011
).
22.
A.
Mejdoubi
and
C.
Brosseau
, “
Dielectric response of perforated two-dimensional lossy heterostructures: A finite-element approach
,”
J. Appl. Phys.
100
,
094103
(
2006
).
23.
L.
Lewin
, “
The electrical constants of a material loaded with spherical particles
,”
J. Inst. Electr. Eng., Part III
94
,
65
68
(
1947
).
24.
D. I.
Kim
,
M.
Takahashi
,
H.
Anzai
, and
S. Y.
Jun
, “
Electromagnetic wave absorber with wide-band frequency characteristics using exponentially tapered ferrite
,”
IEEE Trans. Electromagn. Compat.
38
,
173
177
(
1996
).
25.
E. F.
Kuester
and
C. L.
Holloway
, “
A low-frequency model for wedge or pyramid absorber arrays-I: Theory
,”
IEEE Trans. Electromagn. Compat.
36
,
300
306
(
1994
).
26.
H. J.
Yoon
and
D. I.
Kim
, “
Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the fdtd method
,”
J. Korean Phys. Soc.
45
,
1025
1031
(
2004
).
27.
D. S.
Bychanok
,
A. O.
Plyushch
,
G. V.
Gorokhov
,
U. S.
Bychanok
,
P. P.
Kuzhir
, and
S. A.
Maksimenko
, “
Microwave radiation absorbers based on corrugated composites with carbon fibers
,”
Tech. Phys.
61
,
1880
1884
(
2016
).
28.
M.-J.
Park
,
J.
Choi
, and
S.-S.
Kim
, “
Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders
,”
IEEE Trans. Magn.
36
,
3272
3274
(
2000
).
29.
See http://niipfp.bsu.by/index.php/oborud/tora for “Microwave absorber “Tora””.
30.
D.
Stavenga
,
S.
Foletti
,
G.
Palasantzas
, and
K.
Arikawa
, “
Light on the moth-eye corneal nipple array of butterflies
,”
Proc. R. Soc. London, Ser. B
273
,
661
667
(
2006
).
31.
H. A.
Macleod
,
Thin-Film Optical Filters
(
CRC Press
,
2001
).
32.
N.
Klochko
,
G.
Khrypunov
,
Y.
Myagchenko
,
E.
Melnychuk
,
V.
Kopach
,
K.
Klepikova
,
V.
Lyubov
, and
A.
Kopach
, “
Electrodeposited zinc oxide arrays with the moth-eye effect
,”
Semiconductors
48
,
531
537
(
2014
).
33.
C.-H.
Sun
,
P.
Jiang
, and
B.
Jiang
, “
Broadband moth-eye antireflection coatings on silicon
,”
Appl. Phys. Lett.
92
,
061112
(
2008
).
34.
S. F.
Parker
,
S.
Imberti
,
S. K.
Callear
, and
P. W.
Albers
, “
Structural and spectroscopic studies of a commercial glassy carbon
,”
Chem. Phys.
427
,
44
48
(
2013
).
35.
M.
Letellier
,
A.
Szczurek
,
M.-C.
Basso
,
A.
Pizzi
,
V.
Fierro
,
O.
Ferry
, and
A.
Celzard
, “
Preparation and structural characterisation of model cellular vitreous carbon foams
,”
Carbon
112
,
208
218
(
2017
).
36.
L.
Soukup
,
I.
Gregora
,
L.
Jastrabik
, and
A.
Konakova
, “
Raman spectra and electrical conductivity of glassy carbon
,”
Mater. Sci. Eng., B
11
,
355
357
(
1992
).
37.
K.
Ray
and
R. L.
McCreery
, “
Spatially resolved Raman spectroscopy of carbon electrode surfaces: Observations of structural and chemical heterogeneity
,”
Anal. Chem.
69
,
4680
4687
(
1997
).
38.
S.
Bukalov
,
L.
Leites
,
A.
Sorokin
, and
A.
Kotosonov
, “
Structural changes in industrial glassy carbon as a function of heat treatment temperature according to Raman spectroscopy and x-ray diffraction data
,”
Nanosyst. Phys. Chem. Math.
5
,
186
191
(
2014
).
39.
N.
Solopova
,
N.
Dubrovinskaia
, and
L.
Dubrovinsky
, “
Raman spectroscopy of glassy carbon up to 60 GPa
,”
Appl. Phys. Lett.
102
,
121909
(
2013
).
40.
M.
Nakamizo
,
R.
Kammereck
, and
P. L.
Walker
, “
Laser Raman studies on carbons
,”
Carbon
12
,
259
267
(
1974
).
41.
P.
Mallet-Ladeira
,
P.
Puech
,
C.
Toulouse
,
M.
Cazayous
,
N.
Ratel-Ramond
,
P.
Weisbecker
,
G. L.
Vignoles
, and
M.
Monthioux
, “
A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra-Koenig law
,”
Carbon
80
,
629
639
(
2014
).
42.
F.
Cuevas
,
J.
Montes
,
J.
Cintas
, and
P.
Urban
, “
Electrical conductivity and porosity relationship in metal foams
,”
J. Porous Mater.
16
,
675
(
2009
).
43.
D.
Micheli
,
R. B.
Morles
,
M.
Marchetti
,
F.
Moglie
, and
V. M.
Primiani
, “
Broadband electromagnetic characterization of carbon foam to metal contact
,”
Carbon
68
,
149
158
(
2014
).
44.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 4th ed. (
Pergamon Press
,
1970
).
45.
D.
Bychanok
,
A.
Plyushch
,
G.
Gorokhov
,
V.
Skadorov
,
P.
Kuzhir
,
S.
Maksimenko
,
J.
Macutkevic
,
A.
Ortona
,
L.
Ferrari
, and
E.
Rezaei
, “
Electromagnetic properties of periodic carbon architectures at high frequencies
,” in
2015 International Conference on Electromagnetics in Advanced Applications (ICEAA)
(
IEEE
,
2015
), pp.
43
46
.
46.
F. C.
Cowlard
and
J. C.
Lewis
, “
Vitreous carbon - A new form of carbon
,”
J. Mater. Sci.
2
,
507
512
(
1967
).
You do not currently have access to this content.