In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ∼300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (<10% as the maximum error for the highest doses). Compared to our previous results obtained on Er/Yb-amplifiers, these results reveal the importance of the photo-bleaching mechanism competing with the RIA that cannot be neglected for the modeling of the radiation-induced gain degradation of EDFAs. This implies to measure in representative conditions the RIA at the pump and signal wavelengths that are used as input parameters for the simulation. The validated numerical codes have then been used to evaluate the potential of some EDFA architecture evolutions in the amplifier performance during the space mission. Optimization of both the fiber length and the EDFA pumping scheme allows us to strongly reduce its radiation vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.

1.
L.
Bigot
,
G.
Le Cocq
, and
Y.
Quiquempois
, “
Few-mode erbium-doped fiber amplifiers: A review
,”
J. Lightwave Technol.
33
,
588
596
(
2015
).
2.
K. S.
Abedin
,
J. M.
Fini
,
T. F.
Thierry
,
V. R.
Supradeepa
,
B.
Zhu
,
M. F.
Yan
,
L.
Bansal
,
E. M.
Monberg
, and
D. J.
DiGiovanni
, “
Multicore erbium doped fiber amplifiers for space division multiplexing systems
,”
J. Lightwave Technol.
32
(
16
),
2800
2808
(
2014
).
3.
B.
Pedersen
, “
Detailed theoretical and experimental investigation of high-gain erbium-doped fiber amplifier
,”
IEEE Photonics Technol. Lett.
2
(
12
),
863
865
(
1990
).
4.
S.
Girard
,
J.
Kuhnhenn
,
A.
Gusarov
,
B.
Brichard
,
M.
Van Uffelen
,
Y.
Ouerdane
,
A.
Boukenter
, and
C.
Marcandella
, “
Radiation effects on silica-based optical fibers: Recent advances and future challenges
,”
IEEE Trans. Nucl. Sci.
60
(
3
),
2015
2036
(
2013
).
5.
M.
Li
,
W.
Jiao
,
Y.
Song
,
X.
Zhang
, and
L.
Chang
, “
Self-adaptive high anti-radiation EDFA for space optical communication systems
,”
J. Lightwave Technol.
33
(
21
),
4513
4516
(
2015
).
6.
Z.
Sodnik
,
B.
Furch
,
H.
Lutz
, and
J.
Sel
, “
Optical intersatellite communications
,”
IEEE J. Sel. Top. Quantum Electron.
16
(
5
),
1051
1057
(
2010
).
7.
R. J.
Bussjager
,
M. J.
Hayduk
,
S. T.
Johns
, and
E. W.
Taylor
, “
Gamma-ray induced responses in an erbium doped fiber laser
,” in
Proceedings of the IEEE Aerospace Conference
(
2001
), Vol.
3
, pp.
1473
1479
.
8.
G. M.
Williams
,
M. A.
Putnam
, and
E. J.
Friebele
, “
Space radiation effects on erbium-doped fibers
,”
Proc. SPIE
2811
,
31
37
(
1996
).
9.
G. L. M.
Williams
and
E. J.
Friebele
, “
Space radiation effects on erbium-doped fiber devices: Sources, amplifiers, and passive measurements
,” in
Proceedings of the RADECS
(
1997
), pp.
399
404
.
10.
L.
Skuja
,
M.
Hirano
,
H.
Hosono
, and
K.
Kajihara
, “
Defects in oxide glasses
,”
Phys. Status Solidi C
2
(
1
),
15
24
(
2005
).
11.
B.
Brichard
and
A.
Fernandez
, “
Radiation effects in silica glass optical fibers
,” in
Proceedings of the RADECS, Short Course Notebook
(
2005
), pp.
95
138
.
12.
G.
Liu
and
B.
Jacquier
,
Spectroscopic Properties of Rare Earths in Optical Materials
(
Springer Science and Business Media
,
2006
), p.
550
.
13.
D. L.
Griscom
,
E. J.
Friebele
,
K. J.
Long
, and
J. W.
Fleming
, “
Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers
,”
J. Appl. Phys.
54
(
7
),
3743
3762
(
1983
).
14.
P. L.
Chu
, “
Nonlinear effects in rare-earth-doped fibers and waveguides
,” in
Proceedings of the 10th IEEE LEOS Annual Meeting
(
1997
), Vol.
1
, pp.
371
372
.
15.
H.
Ono
,
M.
Yamada
, and
Y.
Ohishi
, “
Gain-flattened Er/sup 3+/-doped fiber amplifier for a WDM signal in the 1.57-1.60-μm wavelength region
,”
IEEE Photonics Technol. Lett.
9
(
5
),
596
598
(
1997
).
16.
E. J.
Friebele
, “
Radiation protection of fiber optic materials: Effect of cerium doping on the radiation-induced absorption
,”
Appl. Phys. Lett.
27
(
4
),
210
212
(
1975
).
17.
S.
Girard
,
A.
Laurent
,
E.
Pinsard
,
T.
Robin
,
B.
Cadier
,
M.
Boutillier
,
C.
Marcandella
,
A.
Boukenter
, and
Y.
Ouerdane
, “
Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions
,”
Opt. Lett.
39
(
9
),
2541
2544
(
2014
).
18.
M.
Fox
and
S. J.
Stannard-Powell
, “
Attenuation changes in optical fibers due to hydrogen
,”
Electron. Lett.
19
(
22
),
916
917
(
1983
).
19.
J.
Thomas
,
M.
Myara
,
L.
Troussellier
,
E.
Burov
,
A.
Pastouret
,
D.
Boivin
,
G.
Mélin
,
O.
Gilard
,
M.
Sotom
, and
P.
Signoret
, “
Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications
,”
Opt. Express
20
(
3
),
2435
2444
(
2012
).
20.
S.
Girard
,
L.
Mescia
,
M.
Vivona
,
A.
Laurent
,
Y.
Ouerdane
,
C.
Marcandella
,
F.
Prudenzano
,
A.
Boukenter
,
T.
Robin
,
P.
Paillet
,
V.
Goiffon
,
M.
Gaillardin
,
B.
Cadier
,
E.
Pinsard
,
M.
Cannas
, and
R.
Boscaino
, “
Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach
,”
J. Lightwave Technol.
31
(
8
),
1247
1254
(
2013
).
21.
O.
Berne
,
M.
Caussanel
, and
O.
Gilard
, “
A model for the prediction of EDFA gain in a space radiation environment
,”
IEEE Photonics Technol. Lett.
16
(
10
),
2227
2229
(
2004
).
22.
B.
Altiner
and
N. O.
Unverdi
, “
Modelling - Simulation and gain flattening improvements for an Erbium Doped Fiber Amplifier
,” International Symposium on Optomechatronic Technologies, Istanbul, 451–454 (
2009
).
23.
A. A. M.
Saleh
,
R. M.
Jopson
,
J. D.
Evankow
, and
J.
Aspell
, “
Modeling of gain in erbium-doped fiber amplifiers
,”
IEEE Photonics Technol. Lett.
2
(
10
),
714
717
(
1990
).
24.
See http://www.photonics.ixblue.com/ for iXBlue Photonics, Specialty: fiber optics, bragg grating and optical modulation for communication, lasers, lidars and sensors.
25.
S.
Girard
,
A.
Laurent
,
E.
Pinsard
,
M.
Raine
,
T.
Robin
,
B.
Cadier
,
D.
Di Francesca
,
P.
Paillet
,
M.
Gaillardin
,
O.
Duhamel
,
C.
Marcandella
,
M.
Boutillier
,
A.
Ladaci
,
A.
Boukenter
, and
Y.
Ouerdane
, “
Proton irradiation response of hole-assisted carbon coated erbium-doped fiber amplifiers
,”
IEEE Trans. Nucl. Sci.
61
(
6
),
3309
3314
(
2014
).
26.
S.
Girard
,
M.
Vivona
,
A.
Laurent
,
B.
Cadier
,
C.
Marcandella
,
T.
Robin
,
E.
Pinsard
,
A.
Boukenter
, and
Y.
Ouerdane
, “
Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application
,”
Opt. Express
20
(
8
),
8457
8465
(
2012
).
27.
K. V.
Zotov
,
M. E.
Likhachev
,
A. L.
Tomashuk
,
M. M.
Bubnov
,
M. V.
Yashkov
,
A. N.
Guryanov
, and
S. N.
Klyamkin
, “
Radiation-resistant erbium-doped fiber for spacecraft applications
,” in
Proceedings of the RADECS
(
2007
), Vol.
55
, pp.
1
4
.
28.
S.
Girard
,
A.
Laurent
,
E.
Pinsard
,
T.
Robin
,
B.
Cadier
,
M.
Boutillier
,
C.
Marcandella
,
A.
Boukenter
, and
Y.
Ouerdane
, “
Radiation-hardened erbium-doped optical fibers and amplifiers for future high-dose space missions
,”
Proc. SPIE
8971
,
89710E
(
2014
).
29.
P. J.
Lemaire
, “
Reliability of optical fibers exposed to hydrogen: Prediction of long-term loss increases
,”
Opt. Eng.
30
(
6
),
780
789
(
1991
).
30.
H.
Kuswanto
, “
Formation et transformation des défauts ponctuels dans les fibres optiques germanosilicates: influence du traitement thermique et de l'insolation UV
,” Ph.D. theses (
2001
).
31.
R. G.
Ahrens
 et al, “
Radiation reliability of rare earth doped optical fibers for laser communication systems (LT)
,” in
IEEE Military Communications Conference Proceedings (MILCOM)
(
Atlantic City, NJ
,
1999
), Vol.
1
, pp.
694
697
, Cat. No. 99CH36341.
32.
H.
Henschel
and
O.
Kohn
, “
Regeneration of irradiated optical fibres by photobleaching
,”
IEEE Trans. Nucl. Sci.
47
(
3
),
699
704
(
2000
).
33.
D. E.
McCumber
, “
Einstein relations connecting broadband emission and absorption spectra
,”
Phys. Rev.
136
(
4
),
A954
A957
(
1964
).
34.
R. M.
Martin
and
R. S.
Quimby
, “
Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses
,”
J. Opt. Soc. Am. B
23
(
9
),
1770
1775
(
2006
).
35.
L.
Mescia
 et al, “
Optimization of the design of high power Er3+/Yb3+-codoped fiber amplifiers for space missions by means of particle swarm approach
,”
IEEE J. Sel. Top. Quantum Electron
20
(
5
),
484
491
(
2014
).
36.
A.
Giaquinto
,
L.
Mescia
,
G.
Fornarelli
, and
F.
Prudenzano
, “
Particle swarm optimization-based approach for accurate evaluation of upconversion parameters in Er3+-doped fibers
,”
Opt. Lett.
36
(
2
),
142
144
(
2011
).
37.
Y.
Hu
,
S.
Jiang
,
G.
Sorbello
,
T.
Luo
,
Y.
Ding
,
B. C.
Hwang
,
J. H.
Kim
,
H. J.
Seo
, and
N.
Peyghambarian
, “
Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass
,”
J. Opt. Soc. Am. B
18
(
12
),
1928
1934
(
2001
).
38.
M.
Achtenhagen
,
R. J.
Beeson
,
F.
Pan
,
B.
Nyman
, and
A.
Hardy
, “
Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations
,”
J. Lightwave Technol.
19
(
10
),
1521
1526
(
2001
).
39.
O.
Henderson-Sapir
,
J.
Munch
, and
D. J.
Ottaway
, “
Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping
,”
Opt. Lett.
39
(
3
),
493
496
(
2014
).
40.
G.
De Angelis
,
M. S.
Clowdsley
,
J. E.
Nealy
,
R. K.
Tripathi
, and
J. W.
Wilson
, “
Radiation analysis for manned missions to the Jupiter system
,”
Adv. Space Res.
34
(
6
),
1395
1403
(
2004
).
You do not currently have access to this content.