Light-emitting diodes (LEDs) have been demonstrated with a thin p-type layer using the plasmonic effect. Optimal LED device operation was found when using a 20-nm-thick p+-GaN layer. Ag of different thicknesses was deposited on the thin p-type layer and annealed to form the localized Ag particles. The localized Ag particles were embedded by indium tin oxide to form a p-type electrode in the LED structure. By optimization of the plasmonic LED, the significant electroluminescence enhancement was observed when the thickness of Ag was 9.5 nm. Both upward and downward electroluminescence intensities were improved, and the external quantum efficiency was approximately double that of LEDs without the localized Ag particles. The time-resolved photoluminescence (PL) decay time for the LED with the localized Ag particles was shorter than that without the localized Ag particles. The faster PL decay time should cause the increase in internal quantum efficiency by adopting the localized Ag particles. To validate the localized surface plasmon resonance coupling effect, the absorption of the LEDs was investigated experimentally and using simulations.

1.
K.
Okamoto
,
I.
Niki
,
A.
Shvartser
,
Y.
Narukawa
,
T.
Mukai
, and
A.
Scherer
,
Nat. Mater.
3
,
601
(
2004
).
2.
K.
Okamoto
,
I.
Niki
,
A.
Scherer
,
Y.
Narukawa
,
T.
Mukai
, and
Y.
Kawakami
,
Appl. Phys. Lett.
87
,
071102
(
2005
).
3.
K.
Tateishi
,
M.
Funato
,
Y.
Kawakami
,
K.
Okamoto
, and
K.
Tamada
,
Appl. Phys. Lett.
106
,
121112
(
2015
).
4.
H. S.
Zhang
,
J.
Zhu
,
Z. D.
Zhu
,
Q.
Li
, and
G.
Jin
,
Opt. Commun.
311
,
311
(
2013
).
5.
J.
Zhu
,
H.
Zhang
,
Z.
Zhu
,
Q.
Li
, and
G.
Jin
,
Opt. Commun.
322
,
66
(
2014
).
6.
A.
Fadil
,
D.
Iida
,
Y.
Chen
,
J.
Ma
,
Y.
Ou
,
P. M.
Petersen
, and
H.
Ou
,
Sci. Rep.
4
,
6392
(
2014
).
7.
H.
Zhang
,
J.
Zhu
,
Z.
Zhu
,
Y.
Jin
,
Q.
Li
, and
G.
Jin
,
Opt. Express
21
,
13492
(
2013
).
8.
H. S.
Chen
,
C. F.
Chen
,
Y.
Kuo
,
W. H.
Chou
,
C. H.
Shen
,
Y. L.
Jung
,
Y. W.
Kiang
, and
C. C.
Yang
,
Appl. Phys. Lett.
102
,
041108
(
2013
).
9.
S. H.
Chuang
and
D. S.
Wuu
,
SPIE Newsroom
10
,
1117
(
2015
).
10.
M. K.
Kwon
,
J. Y.
Kim
,
B. H.
Kim
,
I. K.
Park
,
C. Y.
Cho
,
C. C.
Byeon
, and
S. J.
Park
,
Adv. Mater.
20
,
1253
(
2008
).
11.
C. H.
Lu
,
C. C.
Lan
,
Y. L.
Lai
,
Y. L.
Li
, and
C. P.
Liu
,
Adv. Funct. Mater.
21
,
4719
(
2011
).
12.
D. M.
Yeh
,
C. F.
Huang
,
C. Y.
Chen
,
Y. C.
Lu
, and
C. C.
Yang
,
Nanotechnology
19
,
345201
(
2008
).
13.
C. Y.
Cho
,
M. K.
Kwon
,
S. J.
Lee
,
S. H.
Han
,
J. W.
Kang
,
S. E.
Kang
,
D. Y.
Lee
, and
S. J.
Park
,
Nanotechnology
21
,
2015201
(
2010
).
14.
C. F.
Lu
,
C. H.
Liao
,
C. Y.
Chen
,
C.
Hsieh
,
Y. W.
Kiang
, and
C. C.
Yang
,
Appl. Phys. Lett.
96
,
261104
(
2010
).
15.
K. C.
Shen
,
C. H.
Liao
,
Z. Y.
Yu
,
J. Y.
Wang
,
C. H.
Lin
,
Y. W.
Kiang
, and
C. C.
Yang
,
J. Appl. Phys.
108
,
113101
(
2010
).
16.
K. S.
Lee
,
D. U.
Lee
, and
E. K.
Kim
,
J. Lumin.
162
,
115
(
2015
).
17.
Z. G.
Dai
,
X. H.
Xiao
,
W.
Wu
,
Y. P.
Zhang
,
L.
Liao
,
S. S.
Guo
,
J. J.
Ying
,
C. X.
Shan
,
M. T.
Sun
, and
C. Z.
Jiang
,
Light Sci.: Appl.
4
,
e342
(
2015
).
18.
X. H.
Xiao
,
F.
Ren
,
X. D.
Zhou
,
T. C.
Peng
,
W.
Wu
,
X. N.
Peng
,
X. F.
Yu
, and
C. Z.
Jiang
,
Appl. Phys. Lett.
97
,
071909
(
2010
).
19.
C. Y.
Cho
,
S. J.
Lee
,
J. H.
Song
,
S. H.
Hong
,
S. M.
Lee
,
Y. H.
Cho
, and
S. J.
Park
,
Appl. Phys. Lett.
98
,
051106
(
2011
).
20.
K.
Okamoto
,
I.
Niki
,
A.
Shvartser
,
G.
Maltezos
,
Y.
Narukawa
,
T.
Mukai
,
Y.
Kawakami
, and
A.
Scherer
,
Phys. Status Solidi A
204
,
2103
(
2007
).
21.
A.
Fadil
et al.,
Sci. Repts.
4
,
6392
(
2014
).
22.
J. O.
Song
,
J. S.
Kwak
,
Y.
Park
, and
T. Y.
Seong
,
Appl. Phys. Lett.
86
,
062104
(
2005
).
23.
K.
Okamoto
and
Y.
Kawakami
,
Phys. Status Solidi C
7
,
2582
(
2010
).
24.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
25.
M. W.
Knight
,
N. S.
King
,
L.
Liu
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
,
ACS Nano
8
,
834
(
2014
).
You do not currently have access to this content.