The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.

1.
D.
Alfè
,
L.
Vocadlo
, and
G.
Price
,
J. Phys.: Condens. Matter
16
,
S973
(
2004
).
2.
L.
Vocadlo
, “
Core viscosity
,” in
Encyclopedia of Geomagnetism and Paleomagnetism
, edited by
D.
Gubbins
and
E.
Herrero-Bervera
(
Springer
,
Netherlands
,
2007
), p.
104
.
3.
4.
S.
Anzellini
,
A.
Dewaele
,
M.
Mezouar
,
P.
Loubeyre
, and
G.
Morard
,
Science
340
,
464
(
2013
).
5.
R. S.
McWilliams
,
D. K.
Spaulding
,
J. H.
Eggert
,
P. M.
Celliers
,
D. G.
Hicks
,
R. F.
Smith
,
G. W.
Collins
, and
R.
Jeanloz
,
Science
338
,
1330
(
2012
).
6.
T.
Kimura
,
Y.
Kuwayama
, and
T.
Yagi
,
J. Chem. Phys.
140
,
074501
(
2014
).
7.
N.
Subramanian
,
A. F.
Goncharov
,
V. V.
Struzhkin
,
M.
Somayazulu
, and
R. J.
Hemley
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6014
(
2011
).
8.
Q.
Williams
,
R.
Jeanloz
,
J.
Bass
,
B.
Svendsen
, and
T. J.
Ahrens
,
Science
236
,
181
(
1987
).
9.
R.
Boehler
,
N.
von Bargen
, and
A.
Chopelas
,
J. Geophys. Res.: Solid Earth
95
,
21731
, doi: (
1990
).
10.
R.
Boehler
,
Rev. Geophys.
38
,
221
, doi: (
2000
).
11.
W.
Bassett
and
M.
Weathers
,
High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto
(
American Geophysical Union
,
1987
), Vol. 39.
12.
R. S.
McWilliams
,
D. A.
Dalton
,
Z.
Konôpková
,
M. F.
Mahmood
, and
A. F.
Goncharov
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
7925
(
2015
).
13.
J. H.
Eggert
,
D. G.
Hicks
,
P. M.
Celliers
,
D. K.
Bradley
,
R. S.
McWilliams
,
R.
Jeanloz
,
J. E.
Miller
,
T. R.
Boehly
, and
G. W.
Collins
,
Nat. Phys.
6
,
40
(
2010
).
14.
A.
Belonoshko
,
R.
Ahuja
, and
B.
Johansson
,
Phys. Rev. B
61
,
11928
(
2000
).
15.
A. B.
Belonoshko
,
S. I.
Simak
,
A. E.
Kochetov
,
B.
Johansson
,
L.
Burakovsky
, and
D. L.
Preston
,
Phys. Rev. Lett.
92
,
195701
(
2004
).
16.
A.
Dewaele
,
M.
Mezouar
,
N.
Guignot
, and
P.
Loubeyre
,
Phys. Rev. Lett.
104
,
255701
(
2010
).
17.
M.
Ross
,
D.
Errandonea
, and
R.
Boehler
,
Phys. Rev. B
76
,
184118
(
2007
).
18.
S.
Bodea
and
R.
Jeanloz
,
J. Appl. Phys.
65
,
4688
(
1989
).
19.
R.
Jeanloz
and
A.
Kavner
,
Philos. Trans. R. Soc. London, Ser. A
354
,
1279
(
1996
).
20.
M.
Manga
and
R.
Jeanloz
,
Geophys. Res. Lett.
23
,
1845
, doi: (
1996
).
21.
M.
Manga
and
R.
Jeanloz
, in
Properties of Earth and Planetary Materials at High Pressure and Temperature
, Geophysical Monograph Series Vol.
101
(
American Geophysical Union
,
1998
).
22.
H.
Morishima
and
H.
Yusa
,
J. Appl. Phys.
83
,
4572
(
1998
).
23.
A.
Dewaele
,
G.
Fiquet
, and
P.
Gillet
,
Rev. Sci. Instrum.
69
,
2421
(
1998
).
24.
W.
Panero
and
R.
Jeanloz
,
J. Geophys. Res.
106
,
6493
, doi: (
2001
).
25.
B.
Kiefer
and
T. S.
Duffy
,
J. Appl. Phys.
97
,
114902
(
2005
).
26.
Z.
Konôpková
,
P.
Lazor
,
A. F.
Goncharov
, and
V. V.
Struzhkin
,
High Pressure Res.
31
,
228
(
2011
).
27.
J. A.
Montoya
and
A. F.
Goncharov
,
J. Appl. Phys.
111
,
112617
(
2012
).
28.
Z. M.
Geballe
and
R.
Jeanloz
,
J. Appl. Phys.
111
,
123518
(
2012
).
29.
E. S. G.
Rainey
,
J. W.
Hernlund
, and
A.
Kavner
,
J. Appl. Phys.
114
,
204905
(
2013
).
30.
R. S.
McWilliams
,
Z.
Konôpková
, and
A. F.
Goncharov
,
Phys. Earth Planet. Inter.
247
,
17
(
2015
).
31.
Z.
Konôpková
,
R. S.
McWilliams
,
N.
Gomez-Perez
, and
A. F.
Goncharov
,
Nature
534
,
99
(
2016
).
32.
A.
Zerr
and
R.
Boehler
,
Science
262
,
553
(
1993
).
33.
R.
Boehler
,
M.
Ross
, and
D. B.
Boercker
,
Phys. Rev. Lett.
78
,
4589
(
1997
).
34.
D.
Errandonea
,
J. Phys. Chem. Solids
67
,
2017
(
2006
).
35.
D.
Errandonea
,
B.
Schwager
,
R.
Ditz
,
C.
Gessmann
,
R.
Boehler
, and
M.
Ross
,
Phys. Rev. B
63
,
132104
(
2001
).
36.
G.
Shen
,
P.
Lazor
, and
S. K.
Saxena
,
Phys. Chem. Miner.
20
,
91
(
1993
).
37.
P.
Lazor
and
S. K.
Saxena
,
Philos. Trans. R. Soc. London, Ser. A
354
,
1279
(
1996
).
38.
S.
Japel
,
B.
Schwager
,
R.
Boehler
, and
M.
Ross
,
Phys. Rev. Lett.
95
,
167801
(
2005
).
39.
B.
Schwager
,
M.
Ross
,
S.
Japel
, and
R.
Boehler
,
J. Chem. Phys.
133
,
084501
(
2010
).
40.
R.
Boehler
,
M.
Ross
,
P.
Söderlind
, and
D.
Boercker
,
Phys. Rev. Lett.
86
,
5731
(
2001
).
41.
R.
Salem
,
S.
Matityahu
,
A.
Melchior
,
M.
Nikolaevsky
,
O.
Noked
, and
E.
Sterer
,
Rev. Sci. Instrum.
86
,
093907
(
2015
).
42.
A. B.
Belonoshko
and
L. S.
Dubrovinsky
,
Am. Mineral.
82
,
441
(
1997
).
43.
C. J.
Wu
,
P.
Söderlind
,
J. N.
Glosli
, and
J. E.
Klepeis
,
Nat. Mater.
8
,
223
(
2009
).
44.
A.
Karandikar
and
R.
Boehler
,
Phys. Rev. B
93
,
054107
(
2016
).
45.
G.
Shen
and
P.
Lazor
,
J. Geophys. Res.: Solid Earth
100
,
17699
, doi: (
1995
).
46.
G. J.
Pert
,
Introductory Fluid Mechanics for Physicists and Mathematicians
(
Wiley
,
2013
), pp.
194
196
.
47.
R. S.
McWilliams
,
D. A.
Dalton
,
M. F.
Mahmood
, and
A. F.
Goncharov
,
Phys. Rev. Lett.
116
,
255501
(
2016
).
48.
E. M.
Alawadhi
and
C. H.
Amon
,
IEEE Trans. Compon. Packag. Technol.
26
,
116
(
2003
).
49.
L.
Yang
,
A.
Karandikar
, and
R.
Boehler
,
Rev. Sci. Instrum.
83
,
063905
(
2012
).
50.
J.
Badro
,
J.
Siebert
, and
F.
Nimmo
,
Nature
536
,
326
(
2016
).
51.
A. B.
Belonoshko
,
O.
LeBacq
,
R.
Ahuja
, and
B.
Johansson
,
J. Chem. Phys.
117
,
7233
(
2002
).
52.
R.
Boehler
,
D.
Santamaría-Pérez
,
D.
Errandonea
, and
M.
Mezouar
,
J. Phys.: Conf. Ser.
121
,
022018
(
2008
).
53.
K.-I.
Funakoshi
,
High Pressure Res.
30
,
60
(
2010
).
You do not currently have access to this content.