We fabricated a terahertz (THz) polarization converter using a twisted nematic (TN) liquid crystal (LC) cell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films coated on quartz glass substrates were used as electrode layers in the TN LC cell. The PEDOT/PSS films were rubbed unidirectionally using a rayon cloth to align the nematic LC, thereby also serving as an alignment layer. The azimuthal surface anchoring strength of the PEDOT/PSS films was measured to be 5 × 10−4 J/m2 using the Néel wall method, which is similar to that of typical polymeric alignment layers. The optical constants of the PEDOT/PSS film in the THz range were also characterized using the Drude-Smith model, and the results indicated that the PEDOT/PSS films could be used both as transparent electrodes in the THz range and as alignment layers for the LC. The electro-optical properties of the fabricated TN LC cell were also investigated using a polarized visible laser and THz time-domain spectroscopic system. In particular, the transmission spectra and polarization conversion property of the TN LC cell in the THz range were theoretically analyzed based on a stratified model that considers optical anisotropy, absorption, and multiple interference. This work substantiates the advantages of TN LC cells with rubbed PEDOT/PSS films useful for THz polarization converters with electrical tunability.

1.
P. H.
Sigel
,
IEEE Trans. Microwave Theory Tech.
50
,
910
(
2002
).
2.
B.
Ferguson
and
X.-C.
Zhang
,
Nat. Mater.
1
,
26
(
2002
).
3.
M.
Tonouchi
,
Nat. Photonics
1
,
97
(
2007
).
4.
T.
Kleine-Ostmann
and
T.
Nagatsuma
,
J. Infrared, Millimeter, Terahertz Waves
32
,
143
(
2011
).
5.
P.
Yeh
and
G.
Gu
,
Optics of Liquid Crystal Displays
(
Wiley
,
Hoboken
,
1997
).
6.
I. C.
Khoo
,
Prog. Quantum Electron.
38
,
77
(
2014
).
7.
T.
Sasaki
,
K.
Noda
,
H.
Ono
, and
N.
Kawatsuki
, in
Liquid Crystalline Polymers/Processing and Applications
, edited by
V. K.
Thakur
and
M. R.
Kessler
(
Springer
,
Berlin
,
2015
), pp.
221
240
.
8.
L.
Wang
,
X.-W.
Lin
,
X.
Liang
,
J.-B.
Wu
,
W.
Hu
,
Z.-G.
Zheng
,
B.-B.
Jin
,
Y.-Q.
Qin
, and
Y.-Q.
Lu
,
Opt. Mater. Express
2
,
1314
(
2012
).
9.
M.
Reuter
,
N.
Vieweg
,
B. M.
Fisher
,
M.
Mikulicz
,
M.
Koch
,
K.
Barbat
, and
R.
Dąbrowski
,
APL Mater.
1
,
012107
(
2013
).
10.
C.-Y.
Chen
,
T.-R.
Tsai
,
C.-L.
Pan
, and
R.-P.
Pan
,
Appl. Phys. Lett.
83
,
4497
(
2003
).
11.
C.-Y.
Chen
,
C.-L.
Pan
,
C.-F.
Hsieh
,
Y.-F.
Lin
, and
R.-P.
Pan
,
Appl. Phys. Lett.
88
,
101107
(
2006
).
12.
C.-Y.
Chen
,
C.-F.
Hsieh
,
Y.-F.
Lin
,
R.-P.
Pan
, and
C.-L.
Pan
,
Opt. Express
12
,
2625
(
2004
).
13.
C.-F.
Hsieh
,
R.-P.
Pan
,
T.-T.
Tang
,
H.-L.
Chen
, and
C.-L.
Pan
,
Opt. Lett.
31
,
1112
(
2006
).
14.
D.
Shrekenhamer
,
W.-C.
Chen
, and
W.-J.
Padilla
,
Phys. Rev. Lett.
110
,
177403
(
2013
).
15.
G.
Isić
,
B.
Vasić
,
D. C.
Zografopoulos
,
R.
Beccherelli
, and
R.
Gajić
,
Phys. Rev. Appl.
3
,
064007
(
2015
).
16.
R.
Kowerdziej
,
L.
Jaroszewicz
,
M.
Olifierczuk
, and
J.
Parka
,
Appl. Phys. Lett.
106
,
092905
(
2015
).
17.
L.
Yang
,
F.
Fan
,
M.
Chen
,
X.
Zhang
, and
S.-J.
Chang
,
Opt. Commun.
382
,
42
(
2017
).
18.
B.
Vasić
,
D. C.
Zografopoulos
,
G.
Isić
,
R.
Beccherelli
, and
R.
Gajić
,
Nanotechnology
28
,
124002
(
2017
).
19.
C.-S.
Yang
,
T.-T.
Tang
,
R.-P.
Pan
,
P.
Yu
, and
C.-L.
Pan
,
Opt. Lett.
39
,
2511
(
2014
).
20.
X.-W.
Lin
,
J.-B.
Wu
,
W.
Hu
,
Z.-G.
Zheng
,
Z.-J.
Wu
,
G.
Zhu
,
F.
Xu
,
B.-B.
Jin
, and
Y.-Q.
Lu
,
AIP Adv.
1
,
032133
(
2011
).
21.
C.-S.
Yang
,
T.-T.
Tang
,
R.-P.
Pan
,
P.
Yu
, and
C.-L.
Pan
,
Appl. Phys. Lett.
104
,
141106
(
2014
).
22.
Y.
Wu
,
X.
Ruan
,
C.-H.
Chen
,
Y.-J.
Shin
,
Y.
Lee
,
J.
Niu
,
J.
Liu
,
Y.
Chen
,
K.-L.
Yang
,
X.
Zhang
,
J.-H.
Ahn
, and
H.
Yang
,
Opt. Express
21
,
21395
(
2013
).
23.
T.
Sasaki
,
K.
Noda
,
N.
Kawatsuki
, and
H.
Ono
,
Opt. Lett.
40
,
1544
(
2015
).
24.
L.
Wang
,
X.-W.
Lin
,
W.
Hu
,
G.-H.
Shao
,
P.
Chen
,
L.-J.
Liang
,
B.-B.
Jin
,
P.-H.
Wu
,
H.
Qian
,
Y.-N.
Lu
,
X.
Liang
,
Z.-G.
Zheng
, and
Y.-Q.
Lu
,
Light: Sci. Appl.
4
,
e253
(
2015
).
25.
Y.
Du
,
H.
Tian
,
X.
Cui
,
H.
Wang
, and
Z.-X.
Zhou
,
J. Mater. Chem. C
4
,
4138
(
2016
).
26.
D. C.
Zografopoulos
,
K. P.
Prokopidis
,
R.
Dabrowski
, and
R.
Beccherelli
,
Opt. Mater. Express
4
,
449
(
2014
).
27.
X.
Tong
,
D. H.
Pei
,
S.
Kobayashi
, and
Y.
Iimura
,
Jpn. J. Appl. Phys., Part 2
36
,
L432
(
1997
).
28.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge University Press
,
Cambridge
,
1999
).
29.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes/The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
,
2007
).
30.
F.
Yan
,
E. P. J.
Parrott
,
B. S.-Y.
Ung
, and
E.
Pickwell-MacPherson
,
J. Phys. Chem. C
119
,
6813
(
2015
).
31.
R.
Lovrinčić
and
A.
Pucci
,
Phys. Rev. B
80
,
205404
(
2009
).
32.
Y. H.
Kim
,
C.
Sachse
,
M. L.
Machala
,
C.
May
,
L.
Müller-Meskamp
, and
K.
Leo
,
Adv. Funct. Mater.
21
,
1076
(
2011
).
33.
Y.
Zhou
,
Z.
He
, and
S.
Sato
,
Jpn. J. Appl. Phys., Part 1
38
,
4857
(
1999
).
34.
K.
Tarumi
,
U.
Finkenzeller
, and
B.
Schuler
,
Jpn. J. Appl. Phys., Part 1
31
,
2829
(
1992
).
35.
S.-T.
Wu
and
C.-S.
Wu
,
Phys. Rev. A
42
,
2219
(
1990
).
36.
D. W.
Berreman
,
J. Opt. Soc. Am.
62
,
502
(
1972
).
37.
R.-P.
Pan
,
C.-F.
Hsieh
,
C.-L.
Pan
, and
C.-Y.
Chen
,
J. Appl. Phys.
103
,
093523
(
2008
).
38.
S.
Stallinga
,
J. Appl. Phys.
85
,
3023
(
1999
).
You do not currently have access to this content.