New developments in the eigenmode projection technique (EPT) are introduced in solving problems of electromagnetic resonance in closed cavities as well as scattering from discontinuities in guided-wave structures. The EPT invokes the eigenmodes of a canonical predefined cavity in the solution procedure and uses the expansion of these eigenmodes to solve Maxwell's equations, in conjunction with a convenient choice of port boundary conditions. For closed cavities, a new spurious-mode separation method is developed, showing robust and efficient spurious-mode separation. This has been tested using more complex and practical examples demonstrating the powerful use of the presented approach. For waveguide scattering problems, convergence studies are being performed showing stable solutions for a relatively small number of expansion modes, and the proposed method has advantages over conventional solvers in analyzing electromagnetic problems with inhomogeneous materials. These convergence studies also lead to an efficient rule-of-thumb for the number of modes to be used in the simulation. The ability to handle closed and open structures is presented in a unified framework that highlights the generality of the EPT which could be used to analyze and design a variety of microwave components.

1.
A.
Wexler
,
IEEE Trans. Microwave Theory Tech.
15
,
508
(
1967
).
2.
R.
MacPhie
and
K.-L.
Wu
,
IEEE Trans. Microwave Theory Tech.
47
,
232
(
1999
).
3.
D.-C.
Liu
,
J. Phys. D: Appl. Phys.
36
(
13
),
1629
(
2003
).
4.
R.
MacPhie
and
K.-L.
Wu
,
IEEE Trans. Antennas Propag.
51
,
2801
(
2003
).
5.
K.
Ogusu
,
IEEE Trans. Microwave Theory Tech.
25
(
11
),
874
(
1977
).
6.
C.
Angulo
,
IRE Trans. Microwave Theory Tech.
5
,
68
(
1957
).
7.
F.
Moglie
,
T.
Rozzi
,
P.
Marcozzi
, and
A.
Schiavoni
,
IEEE Microwave Guided Wave Lett.
2
,
475
(
1992
).
8.
Z.
Lou
and
J.-M.
Jin
,
IEEE Trans. Microwave Theory Tech.
53
,
3014
(
2005
).
9.
A.
Belenguer
,
H.
Esteban
,
V.
Boria
,
C.
Bachiller
, and
J.
Morro
,
IEEE Trans. Microwave Theory Tech.
58
,
537
(
2010
).
10.
P.
Arcioni
,
M.
Bressan
, and
L.
Perregrini
,
IEEE Trans. Microwave Theory Tech.
43
,
1848
(
1995
).
11.
P.
Arcioni
,
M.
Bozzi
,
M.
Bressan
, and
L.
Perregrini
,
Int. J. RF Microwave Comput.-Aided Eng.
10
,
183
(
2000
).
12.
J. C.
Slater
,
Microwave Electronics
(
D. Van Nostrand Company
,
1950
), pp.
465
483
.
13.
K.
Kurokawa
,
IRE Trans. Microwave Theory Tech.
6
,
178
(
1958
).
14.
S.
Schelkunoff
,
Proc. IRE
32
,
83
(
1944
).
15.
T.
Teichmann
and
E. P.
Wigner
,
J. Appl. Phys.
24
,
262
(
1953
).
16.
S. A.
Schelkunoff
,
J. Appl. Phys.
26
,
1231
(
1955
).
17.
S.
Cohn
,
IRE Trans. Microwave Theory Tech.
7
,
149
(
1959
).
18.
J.
Slater
,
Rev. Mod. Phys.
20
,
473
(
1948
).
19.
M. A.
Othman
,
T. M.
Abuelfadl
, and
I. A.
Eshrah
, in
IEEE Antennas and Propagation Society International Symposium (APSURSI)
(
2012
), pp.
1
2
.
20.
M.
Nasr
,
I.
Eshrah
, and
T.
Abuelfadl
, in
EEE Antennas and Propagation Society International Symposium (APSURSI)
(
2013
), pp.
1312
1313
.
21.
M.
Nasr
,
I.
Eshrah
, and
T.
Abuelfadl
, in
2013 European Microwave Conference (EuMC)
(
2013
), pp.
1231
1234
.
22.
M. A.
Othman
,
I. A.
Eshrah
, and
T. M.
Abuelfadl
, in
IEEE International Microwave Symposium
(
2013
).
23.
M.
Nasr
,
I.
Eshrah
, and
T.
Abuelfadl
,
IEEE Trans. Antennas Propag.
62
,
3222
(
2014
).
24.
T. K.
Mealy
,
I. A.
Eshrah
, and
T. M.
Abuelfadl
, in
IEEE International Microwave Symposium
(
2016
).
25.
I. A.
Eshrah
and
T. M.
Abuelfadl
, in
IEEE International Microwave Symposium
(
2016
).
26.
J. G. V.
Bladel
,
Electromagnetic Fields
, IEEE Press Series on Electromagnetic Wave Theory (
Wiley-Interscience
,
2007
), pp.
509
520
.
27.
R. E.
Collin
,
Foundations for Microwave Engineering
, IEEE Press Series on Electromagnetic Wave Theory (
Wiley-Interscience
,
2001
) pp.
525
540
.
28.
CST© - Computer Simulation Technology.
29.
F.
Gerigk
, in
Proceedings of the CERN Accelerator School CAS 2010: RF for accelerators
(
2011
).
30.
H.
Haskal
,
IEEE Trans. Microwave Theory Tech.
12
,
184
(
1964
).
31.
R. B.
Marks
and
D. F.
Williams
,
J. Res. Natl. Inst. Stand. Technol.
97
,
5
(
1992
).
32.
R.
Levy
,
IEEE Trans. Microwave Theory Tech.
48
,
1712
(
2000
).
33.
See http://mathworld.wolfram.com/GibbsPhenomenon.html for Gibbs Phenomenon description.
34.
R. R.
Mett
,
J. W.
Sidabras
,
I. S.
Golovina
, and
J. S.
Hyde
,
Rev. Sci. Instrum.
79
,
094702
(
2008
).
35.
S. Y.
Elnaggar
,
R.
Tervo
, and
S. M.
Mattar
,
J. Magn. Reson.
238
,
1
(
2014
).
You do not currently have access to this content.