A class of active acoustic metamaterials (AMMs) with a fully controllable effective density in real-time is introduced, modeled, and experimentally verified. The density of the developed AMM can be programmed to any value ranging from −100 kg/m3 to 100 kg/m3 passing by near zero density conditions. This is achievable for any frequency between 500 and 1500 Hz. The material consists of clamped piezoelectric diaphragms with air as the background fluid. The dynamics of the diaphragms are controlled by connecting a closed feedback control loop between the piezoelectric layers of the diaphragm. The density of the material is adjustable through an outer adaptive feedback loop that is implemented by the real-time evaluation of the density using the 4-microphone technique. Applications for the new material include programmable active acoustic filters, nonsymmetric acoustic transmission, and programmable acoustic superlens.

1.
J.
Li
,
L.
Fok
,
X.
Yin
,
G.
Bartal
, and
X.
Zhang
,
Nat. Mater.
8
,
931
(
2009
).
2.
J. J.
Park
,
C. M.
Park
,
K. J. B.
Lee
, and
S. H.
Lee
,
Appl. Phys. Lett.
106
,
051901
(
2015
).
3.
N.
Kaina
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Nature
525
,
77
(
2015
).
4.
S. A.
Cummer
and
D.
Schurig
,
New J. Phys.
9
,
45
(
2007
).
5.
S.
Cummer
,
B.-I.
Popa
,
D.
Schurig
,
D.
Smith
,
J.
Pendry
,
M.
Rahm
, and
A.
Starr
,
Phys. Rev. Lett.
100
,
024301
(
2008
).
6.
D.
Torrent
and
J.
Sánchez-Dehesa
,
New J. Phys.
10
,
063015
(
2008
).
7.
J.
Zhao
,
Z. N.
Chen
,
B.
Li
, and
C.-W.
Qiu
,
J. Appl. Phys.
117
,
214507
(
2015
).
8.
B.
Liang
,
B.
Yuan
, and
J.-C.
Cheng
,
Phys. Rev. Lett.
103
,
104301
(
2009
).
9.
B.-I.
Popa
and
S. A.
Cummer
,
Nat. Commun.
5
,
3398
(
2014
).
10.
J.
Ma
,
M. B.
Steer
, and
X.
Jiang
,
Appl. Phys. Lett.
106
,
111903
(
2015
).
11.
M.
Fink
,
Nat. Mater.
13
,
848
(
2014
).
12.
J.-P.
Groby
,
W.
Huang
,
A.
Lardeau
, and
Y.
Aurégan
,
J. Appl. Phys.
117
,
124903
(
2015
).
13.
R.
Fleury
and
A.
Alù
,
Phys. Rev. Lett.
111
,
055501
(
2013
).
14.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
,
1734
(
2000
).
15.
Y.
Li
,
B.
Liang
,
X.
Tao
,
X.-F.
Zhu
,
X.-Y.
Zou
, and
J.-C.
Cheng
,
Appl. Phys. Lett.
101
,
233508
(
2012
).
16.
Z.
Liang
and
J.
Li
,
Phys. Rev. Lett.
108
,
114301
(
2012
).
17.
S. K.
Maurya
,
A.
Pandey
,
S.
Shukla
, and
S.
Saxena
,
Sci. Rep.
6
,
33683
(
2016
).
18.
D.
Torrent
and
J.
Sánchez-Dehesa
,
Phys. Rev. B
74
,
224305
(
2006
).
19.
D.
Torrent
and
J.
Sánchez-Dehesa
,
New J. Phys.
10
,
023004
(
2008
).
20.
D.
Torrent
and
J.
Sánchez-Dehesa
,
Phys. Rev. Lett.
105
,
174301
(
2010
).
21.
S. H.
Lee
,
C. M.
Park
,
Y. M.
Seo
,
Z. G.
Wang
, and
C. K.
Kim
,
Phys. Lett. A
373
,
4464
(
2009
).
22.
F.
Bongard
,
H.
Lissek
, and
J.
Mosig
,
Phys. Rev. B
82
,
094306
(
2010
).
23.
L.
Fok
and
X.
Zhang
,
Phys. Rev. B
83
,
214304
(
2011
).
24.
T.-Y.
Huang
,
C.
Shen
, and
Y.
Jing
,
J. Acoust. Soc. Am.
139
,
3240
(
2016
).
25.
C. J.
Naify
,
C.-M.
Chang
,
G.
McKnight
, and
S.
Nutt
,
J. Appl. Phys.
108
,
114905
(
2010
).
26.
C. J.
Naify
,
C.-M.
Chang
,
G.
McKnight
,
F.
Scheulen
, and
S.
Nutt
,
J. Appl. Phys.
109
,
104902
(
2011
).
27.
N.
Sui
,
X.
Yan
,
T.-Y.
Huang
,
J.
Xu
,
F.-G.
Yuan
, and
Y.
Jing
,
Appl. Phys. Lett.
106
,
171905
(
2015
).
28.
L.
Fan
,
Z.
Chen
,
S.-Y.
Zhang
,
J.
Ding
,
X.-J.
Li
, and
H.
Zhang
,
Appl. Phys. Lett.
106
,
151908
(
2015
).
29.
Y.
Gu
,
Y.
Cheng
,
J.
Wang
, and
X.
Liu
,
J. Appl. Phys.
118
,
024505
(
2015
).
30.
F.
Casadei
,
T.
Delpero
,
A.
Bergamini
,
P.
Ermanni
, and
M.
Ruzzene
,
J. Appl. Phys.
112
,
064902
(
2012
).
31.
W.
Akl
and
A.
Baz
,
J. Intell. Mater. Syst. Struct.
21
,
541
(
2010
).
32.
A.
Baz
,
New J. Phys.
11
,
123010
(
2009
).
33.
W.
Akl
and
A.
Baz
,
J. Dyn. Syst., Meas., Control
134
,
061001
(
2012
).
34.
W.
Akl
and
A.
Baz
,
J. Appl. Phys.
112
,
084912
(
2012
).
35.
X.
Chen
,
X.
Xu
,
S.
Ai
,
H.
Chen
,
Y.
Pei
, and
X.
Zhou
,
Appl. Phys. Lett.
105
,
071913
(
2014
).
36.
Y.
Jin
,
B.
Bonello
, and
Y.
Pan
,
J. Phys. D: Appl. Phys.
47
,
245301
(
2014
).
37.
A. A.
Kutsenko
,
A. L.
Shuvalov
,
O.
Poncelet
, and
A. N.
Darinskii
,
J. Acoust. Soc. Am.
137
,
606
(
2015
).
38.
Z.
Hou
and
B. M.
Assouar
,
Appl. Phys. Lett.
106
,
251901
(
2015
).
39.
S.
Xiao
,
G.
Ma
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
,
Appl. Phys. Lett.
106
,
091904
(
2015
).
40.
Z.
Chen
,
C.
Xue
,
L.
Fan
,
S.-Y.
Zhang
,
X.-J.
Li
,
H.
Zhang
, and
J.
Ding
,
Sci. Rep.
6
,
30254
(
2016
).
41.
A.
Allam
,
A.
Elsabbagh
, and
W.
Akl
,
J. Acoust. Soc. Am.
140
,
3607
(
2016
).
42.
B.-I.
Popa
,
L.
Zigoneanu
, and
S.
Cummer
,
Phys. Rev. B
88
,
024303
(
2013
).
43.
B.-I.
Popa
,
D.
Shinde
,
A.
Konneker
, and
S. A.
Cummer
,
Phys. Rev. B
91
,
220303
(
2015
).
44.
V.
Fokin
,
M.
Ambati
,
C.
Sun
, and
X.
Zhang
,
Phys. Rev. B
76
,
144302
(
2007
).
45.
C. R.
Simovski
,
Opt. Spectrosc.
107
,
726
(
2009
).
46.
A.
Alù
,
Phys. Rev. B
83
,
081102
(
2011
).
47.
A.
Srivastava
,
Int. J. Smart Nano Mater.
6
,
41
(
2015
).
48.
X.
Hu
,
K.-M.
Ho
,
C. T.
Chan
, and
J.
Zi
,
Phys. Rev. B
77
,
172301
(
2008
).
49.
M.
Yang
,
G.
Ma
,
Y.
Wu
,
Z.
Yang
, and
P.
Sheng
,
Phys. Rev. B
89
,
064309
(
2014
).
50.
J. N.
Reddy
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
, 2nd ed. (
CRC Press
,
Boca Raton
,
2004
), pp. 269,
356
357
.
51.
C. K.
Lee
,
J. Acoust. Soc. Am.
87
,
1144
(
1990
).
52.
ASTM E2611-09
,
Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method
(
ASTM International
,
2009
).
53.
P.
Li
,
S.
Yao
,
X.
Zhou
,
G.
Huang
, and
G.
Hu
,
J. Acoust. Soc. Am.
135
,
1844
(
2014
).
54.
Z.-m.
Gu
,
B.
Liang
,
Y.
Li
,
X.-y.
Zou
,
L.-l.
Yin
, and
J.-c.
Cheng
,
J. Appl. Phys.
117
,
074502
(
2015
).
55.
M.
Abom
,
Mech. Syst. Signal Process.
5
,
89
(
1991
).
You do not currently have access to this content.