An analytical solution in a closed form is obtained for the three-dimensional elastic strain distribution in an unlimited medium containing an inclusion with a coordinate-dependent lattice mismatch (an eigenstrain). Quantum dots consisting of a solid solution with a spatially varying composition are examples of such inclusions. It is assumed that both the inclusion and the surrounding medium (the matrix) are elastically isotropic and have the same Young's modulus and Poisson ratio. The inclusion shape is supposed to be an arbitrary polyhedron, and the coordinate dependence of the lattice misfit, with respect to the matrix, is assumed to be a polynomial of any degree. It is shown that, both inside and outside the inclusion, the strain tensor is expressed as a sum of contributions of all faces, edges, and vertices of the inclusion. Each of these contributions, as a function of the observation point's coordinates, is a product of some polynomial and a simple analytical function, which is the solid angle subtended by the face from the observation point (for a contribution of a face), or the potential of the uniformly charged edge (for a contribution of an edge), or the distance from the vertex to the observation point (for a contribution of a vertex). The method of constructing the relevant polynomial functions is suggested. We also found out that similar expressions describe an electrostatic or gravitational potential, as well as its first and second derivatives, of a polyhedral body with a charge/mass density that depends on coordinates polynomially.

1.
J.
Stangl
,
V.
Holý
, and
G.
Bauer
,
Rev. Mod. Phys.
76
,
725
(
2004
).
2.
G. L.
Bir
and
G. E.
Pikus
,
Symmetry and Strain-Induced Effects in Semiconductors
(
Wiley
,
New York
,
1974
).
3.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
4.
A. V.
Dvurechenskii
,
A. V.
Nenashev
, and
A. I.
Yakimov
,
Nanotechnology
13
,
75
(
2002
).
5.
A. F.
Zinovieva
,
A. I.
Nikiforov
,
V. A.
Timofeev
,
A. V.
Nenashev
,
A. V.
Dvurechenskii
, and
L. V.
Kulik
,
Phys. Rev. B
88
,
235308
(
2013
).
6.
M.
Grundmann
,
O.
Stier
, and
D.
Bimberg
,
Phys. Rev. B
52
,
11969
(
1995
).
7.
C.
Pryor
,
Phys. Rev. B
57
,
7190
(
1998
).
8.
O.
Stier
,
M.
Grundmann
, and
D.
Bimberg
,
Phys. Rev. B
59
,
5688
(
1999
).
9.
V.-G.
Stoleru
,
D.
Pal
, and
E.
Towe
,
Phys. E: Low-Dimens. Syst. Nanostruct.
15
,
131
(
2002
).
10.
G. J.
Rodin
,
J. Mech. Phys. Solids
44
,
1977
(
1996
).
11.
D. A.
Faux
,
J. R.
Downes
, and
E. P.
O'Reilly
,
J. Appl. Phys.
82
,
3754
(
1997
).
12.
F.
Glas
,
J. Appl. Phys.
90
,
3232
(
2001
).
13.
X.
Jiang
and
E.
Pan
,
Int. J. Solids Struct.
41
,
4361
(
2004
).
14.
W.-N.
Zou
,
Q.-C.
He
, and
Q.-S.
Zheng
,
Int. J. Solids Struct.
48
,
2681
(
2011
).
15.
L. G.
Sun
,
K. Y.
Xu
, and
E.
Pan
,
Int. J. Solids Struct.
49
,
1773
(
2012
).
16.
A. V.
Nenashev
,
A. A.
Koshkarev
, and
A. V.
Dvurechenskii
,
Optoelectron. Instrum. Data Process.
49
,
440
(
2013
).
17.
Q. D.
Chen
,
K. Y.
Xu
, and
E.
Pan
,
Int. J. Solids Struct.
51
,
53
(
2014
).
18.
Y. M.
Yue
,
K. Y.
Xu
,
Q. D.
Chen
, and
E.
Pan
,
Acta Mech.
226
,
2365
(
2015
).
19.
Y.-G.
Lee
,
W.-N.
Zou
, and
E.
Pan
,
Proc. Math. Phys. Eng. Sci./R. Soc.
471
,
20140827
(
2015
).
20.
J. D.
Eshelby
,
Proc. R. Soc. London, A
241
,
376
(
1957
).
21.
J. D.
Eshelby
,
Proc. R. Soc. London, A
252
,
561
(
1959
).
22.
J. D.
Eshelby
, in
Progress in Solid Mechanics
, edited by
I. N.
Sneddon
and
R.
Hill
(
North-Holland
,
Amsterdam
,
1961
), Vol.
2
, pp.
89
140
.
23.
N.
Kinoshita
and
T.
Mura
,
Phys. Status Solidi A
5
,
759
(
1971
).
24.
R. J.
Asaro
and
D. M.
Barnett
,
J. Mech. Phys. Solids
23
,
77
(
1975
).
25.
T.
Mura
and
N.
Kinoshita
,
Phys. Status Solidi A
48
,
447
(
1978
).
26.
N.
Kinoshita
and
T.
Mura
,
Q. Appl. Math.
44
,
195
(
1986
); available at http://www.jstor.org/stable/43637359.
27.
H. Y.
Yu
,
S. C.
Sanday
, and
C. I.
Chang
,
Proc. R. Soc. London, A
444
,
239
(
1994
).
28.
M.
Rahman
,
J. Appl. Mech.
69
,
593
(
2002
).
29.
Y. P.
Chiu
,
J. Appl. Mech.
44
,
587
(
1977
).
30.
Y. P.
Chiu
,
J. Appl. Mech.
45
,
302
(
1978
).
31.
J. R.
Downes
,
D. A.
Faux
, and
E. P.
O'Reilly
,
J. Appl. Phys.
81
,
6700
(
1997
).
32.
G. S.
Pearson
and
D. A.
Faux
,
J. Appl. Phys.
88
,
730
(
2000
).
33.
H.
Nozaki
and
M.
Taya
,
J. Appl. Mech.
68
,
441
(
2000
).
34.
Q.
Li
and
P. M.
Anderson
,
J. Elasticity Phys. Sci. Solids
64
,
237
(
2001
).
35.
I. A.
Ovid'ko
and
A. G.
Sheinerman
,
Rev. Adv. Mater. Sci.
9
,
17
(
2005
); available at http://www.ipme.ru/e-journals/RAMS/no_1905/ovidko.html.
36.
B. N.
Kuvshinov
,
Int. J. Solids Struct.
45
,
1352
(
2008
).
37.
A. V.
Nenashev
and
A. V.
Dvurechenskii
,
J. Appl. Phys.
107
,
064322
(
2010
).
38.
X.-L.
Gao
and
M.
Liu
,
J. Mech. Phys. Solids
60
,
261
(
2012
).
39.
Z.
Wang
,
H.
Yu
, and
Q.
Wang
,
Int. J. Plast.
76
,
1
(
2016
).
40.
P.
Offermans
,
P. M.
Koenraad
,
J. H.
Wolter
,
K.
Pierz
,
M.
Roy
, and
P. A.
Maksym
,
Phys. Rev. B
72
,
165332
(
2005
).
41.
M.
Stoffel
,
A.
Malachias
,
A.
Rastelli
,
T. H.
Metzger
, and
O. G.
Schmidt
,
Appl. Phys. Lett.
94
,
253114
(
2009
).
42.
A.
Picco
,
E.
Bonera
,
F.
Pezzoli
,
E.
Grilli
,
O. G.
Schmidt
,
F.
Isa
,
S.
Cecchi
, and
M.
Guzzi
,
Nanoscale Res. Lett.
7
,
633
(
2012
).
43.
V.
Pohánka
,
Geophys. Prospect.
46
,
391
(
1998
).
44.
H.
Holstein
,
Geophysics
68
,
157
(
2003
).
45.
Hamayun
,
I.
Prutkin
, and
R.
Tenzer
,
J. Geod.
83
,
1163
(
2009
).
46.
M. G.
D'Urso
,
Celestial Mech. Dyn. Astron.
120
,
349
(
2014
).
47.
J. T.
Conway
,
Celestial Mech. Dyn. Astron.
121
,
17
(
2015
).
48.
D. B.
Rao
,
M. J.
Prakash
, and
N. R.
Babu
,
Geophys. Prospect.
38
,
411
(
1990
).
49.
L. A.
Gallardo-Delgado
,
M. A.
Pérez-Flores
, and
E.
Gómez-Treviño
,
Geophysics
68
,
949
(
2003
).
50.
A. P.
Gokula
and
R. G.
Sastry
,
J. Earth Syst. Sci.
124
,
1735
(
2015
).
51.
R. A.
Werner
and
D. J.
Scheeres
,
Celestial Mech. Dyn. Astron.
65
,
313
(
1996
).
52.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Butterworth-Heinemann
,
Oxford
,
1986
).
53.
J. H.
Davies
,
J. Appl. Phys.
84
,
1358
(
1998
).
54.
D.
Nagy
,
Geophysics
31
,
362
(
1966
).
55.
M. K.
Paul
,
Pure Appl. Geophys.
112
,
553
(
1974
).
56.
M.
Okabe
,
Geophysics
44
,
730
(
1979
).
57.
V.
Pohánka
,
Geophys. Prospect.
36
,
733
(
1988
).
58.
H.
Holstein
and
B.
Ketteridge
,
Geophysics
61
,
357
(
1996
).
59.
H.
Holstein
,
Geophysics
67
,
1126
(
2002
).
60.
J.
García-Abdeslem
,
Geophysics
70
,
J39
(
2005
).
61.
M. G.
D'Urso
,
Surv. Geophys.
36
,
391
(
2015
).
62.
R. A.
Werner
,
Celestial Mech. Dyn. Astron.
59
,
253
(
1994
).
63.
R. A.
Broucke
, “
Closed form expressions for some gravitational potentials
,” in
The Dynamics of Small Bodies in the Solar System: A Major Key to Solar Systems Studies
, edited by
B. A.
Steves
and
A. E.
Roy
(
Springer
,
Dordrecht, Netherlands
,
1999
), pp.
321
340
.
64.
I. E.
Tamm
,
Fundamentals of the Theory of Electricity
(
Mir
,
Moscow
,
1979
).
65.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill
,
New York
,
1941
).
66.
A. V.
Oosterom
and
J.
Strackee
,
IEEE Trans. Biomed. Eng.
30
,
125
(
1983
).
67.
A. V.
Nenashev
and
A. V.
Dvurechenskii
, “
Strain distribution in quantum dot of arbitrary polyhedral shape: Analytical solution in closed form
,” e-print arXiv:0707.2183.
68.
J. H.
Davies
,
J. Appl. Mech.
70
,
655
(
2003
).
69.
D. A.
Faux
and
G. S.
Pearson
,
Phys. Rev. B
62
,
R4798
(
2000
).
70.
D. A.
Faux
and
U. M. E.
Christmas
,
J. Appl. Phys.
98
,
033534
(
2005
).
71.
H.
Chu
,
E.
Pan
,
J.
Ramsey
,
J.
Wang
, and
C.
Xue
,
Int. J. Solids Struct.
48
,
673
(
2011
).
72.
L.
Ma
and
A. M.
Korsunsky
,
Int. J. Solids Struct.
51
,
4477
(
2014
).

Supplementary Material

You do not currently have access to this content.