High-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for noninvasive tumor treatment. The key component of HIFU systems is the acoustic transducer, which generates a focal region of high-intensity focused ultrasonic energy. A key determinant of safety in HIFU treatment is the size of the focal region. To achieve subwavelength focusing, we previously investigated the feasibility of an ultrasonic spherical cavity resonator (USCR) with two open ends. To further investigate the properties of the USCR, experiments and simulations were performed to comprehensively characterize the acoustic field generated. The emphasis was on the field formation process, the pressure distribution, the frequency dependence, and the acoustic nonlinearity. As a novel simulation approach, an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model was used to numerically analyze the acoustic field. The reliability of this model was verified by comparing the results generated with those from experiments. The MRT-LBM model gave new insight into conventional acoustic numerical simulations and provided significant indications for USCR parameter optimization. The USCR demonstrated its feasibility for application in HIFU treatment or in other fields that demand high-precision focusing.

1.
J. E.
Kennedy
,
F.
Wu
,
G. R.
ter Haar
,
F. V.
Gleeson
,
R. R.
Phillips
,
M. R.
Middleton
, and
D.
Cranston
,
Ultrasonics
42
,
931
(
2004
).
2.
J. E.
Kennedy
,
Nat. Rev. Cancer
5
,
321
(
2005
).
3.
D. J.
Suo
,
Z. Y.
Jin
,
X. N.
Jiang
,
P. A.
Dayton
, and
Y.
Jing
,
Appl. Phys. Lett.
110
,
023703
(
2017
).
4.
S.
Ohtsuki
, in
Ultrasonic Tissue Characterization
, edited by
F.
Dunn
,
M.
Tanaka
,
S.
Ohtsuki
, and
Y.
Saijo
(
Springer Japan
,
Tokyo
,
1996
), p.
53
.
5.
X.
Wu
and
M.
Sherar
,
Phys. Med. Biol.
47
,
1603
(
2002
).
6.
S.
Maxim
,
T. W. H.
Sheu
, and
T.
Marc
,
J. Acoust. Soc. Am.
134
,
3931
(
2013
).
7.
D. J.
Suo
,
S. J.
Guo
,
W. L.
Lin
,
X. N.
Jiang
, and
Y.
Jing
,
Phys. Med. Biol.
60
,
7403
(
2015
).
8.
F. Q.
Li
,
H.
Wang
,
D. P.
Zeng
,
T. B.
Fan
,
H.
Geng
,
J.
Tu
,
X. S.
Guo
,
X. B.
Gong
,
C. L.
Zhao
,
Z. L.
Wang
,
D.
Zhang
, and
D. Z. B.
Wang
,
App. Phys. Lett.
102
,
204102
(
2013
).
9.
F.
Prieura
and
S.
Holm
,
J. Acoust. Soc. Am.
130
,
1125
(
2011
).
10.
J.
Jaros
,
A. P.
Rendell
, and
B. E.
Treeby
,
Int. J. High Perform. C.
30
,
137
(
2016
).
11.
S.
Chen
and
G. D.
Doolen
,
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
12.
Q.
Li
,
Y. L.
He
, and
Y.
Wang
,
Phys. Rev. E
76
,
056705
(
2007
).
13.
D.
Haydock
and
J. M.
Yeomans
,
J. Phys. A
36
,
5683
(
2003
).
14.
M.
Daemia
,
M.
Taeibi–Rahnia
, and
H.
Massahb
,
Chin. Phys. B
24
,
024302
(
2015
).
15.
T. C.
Papanastasiou
,
G. C.
Georgiou
, and
A. N.
Alexandrou
,
Viscous Fluid Flow
(
CRC Press
,
Boca Raton, FL
,
2000
).
16.
Y. H.
Qian
,
D.
ďHumiéres
, and
P.
Lallemand
,
Europhys. Lett.
17
,
479
(
1992
).
17.
W. J.
Xie
,
J. Comput. Phys.
281
,
55
(
2015
).
18.
P. A.
Skordos
,
Phys. Rev. E
48
,
4823
(
1993
).
19.
M.
Bouzidi
,
M.
Firdaouss
, and
P.
Lallemand
,
Phys. Fluids
13
,
3452
(
2001
).
20.
S.
Succi
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
(
Oxford University Press
,
Oxford
,
2001
).
You do not currently have access to this content.