Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of 192 F/g along with a maximum energy density of 3.8 W h/kg and a power density of 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ∼99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

1.
L.
Craco
and
J.
Faria
,
J. Appl. Phys.
119
,
085107
(
2016
).
2.
M. A. I.
Shuvo
,
G.
Rodriguez
,
M. T.
Islam
,
H.
Karim
,
N.
Ramabadran
,
J. C.
Noveron
, and
Y.
Lin
,
J. Appl. Phys.
118
,
125102
(
2015
).
3.
A.
Orphanou
,
T.
Yamada
, and
C. Y.
Yang
,
J. Appl. Phys.
119
,
214311
(
2016
).
4.
A. K.
Singh
and
K.
Mandal
,
J. Appl. Phys.
117
,
105101
(
2015
).
5.
X.
Zang
,
P.
Li
,
Q.
Chen
,
K.
Wang
,
J.
Wei
,
D.
Wu
, and
H.
Zhu
,
J. Appl. Phys.
115
,
024305
(
2014
).
6.
A.
Mishra
and
S.
Ramaprabhu
,
J. Appl. Phys.
112
,
104315
(
2012
).
7.
J.
Chen
,
N.
Xia
,
T.
Zhou
,
S.
Tan
,
F.
Jiang
, and
D.
Yuan
,
Int. J. Electrochem. Sci.
4
,
1163
(
2009
).
8.
S.
Boukhalfa
,
K.
Evanoff
, and
G.
Yushin
,
Energy Environ. Sci.
5
,
6872
(
2012
).
9.
C.-T.
Hsieh
,
Y.-C.
Chen
,
Y.-F.
Chen
,
M. M.
Huq
,
P.-Y.
Chen
, and
B.-S.
Jang
,
J. Power Sources
269
,
526
(
2014
).
10.
Y.
Zhu
,
H. I.
Elim
,
Y.-L.
Foo
,
T.
Yu
,
Y.
Liu
,
W.
Ji
,
J.-Y.
Lee
,
Z.
Shen
,
A. T.-S.
Wee
, and
J. T.-L.
Thong
,
Adv. Mater.
18
,
587
(
2006
).
11.
C.
Du
,
J.
Yeh
, and
N.
Pan
,
Nanotechnology
16
,
350
(
2005
).
12.
S.
Chen
,
Y.
Liu
, and
J.
Chen
,
Chem. Soc. Rev.
43
,
5372
(
2014
).
13.
R. A.
Fisher
,
M. R.
Watt
, and
W. J.
Ready
,
ECS J. Solid State Sci. Technol.
2
,
M3170
(
2013
).
14.
M.
Ho
,
P.
Khiew
,
D.
Isa
,
T.
Tan
,
W.
Chiu
, and
C. H.
Chia
,
Nano
9
,
1430002
(
2014
).
15.
S. W.
Lee
,
J.
Kim
,
S.
Chen
,
P. T.
Hammond
, and
Y.
Shao-Horn
,
ACS Nano
4
,
3889
(
2010
).
16.
J. H.
Park
,
J. M.
Ko
, and
O. O.
Park
,
J. Electrochem. Soc.
150
,
A864
(
2003
).
17.
P.-C.
Chen
,
G.
Shen
,
S.
Sukcharoenchoke
, and
C.
Zhou
,
Appl. Phys. Lett.
94
,
043113
(
2009
).
18.
Z.
Chen
,
V.
Augustyn
,
J.
Wen
,
Y.
Zhang
,
M.
Shen
,
B.
Dunn
, and
Y.
Lu
,
Adv. Mater.
23
,
791
(
2011
).
19.
L.
Aravinda
,
K.
Nagaraja
,
H.
Nagaraja
,
K. U.
Bhat
, and
B. R.
Bhat
,
Electrochim. Acta
95
,
119
(
2013
).
20.
P.
Lin
,
Q.
She
,
B.
Hong
,
X.
Liu
,
Y.
Shi
,
Z.
Shi
,
M.
Zheng
, and
Q.
Dong
,
J. Electrochem. Soc.
157
,
A818
(
2010
).
21.
T.
Pauporté
,
O.
Lupan
,
B.
Viana
,
L.
Chow
, and
M.
Tchernycheva
, in
Controlling the Properties of Electrodeposited ZnO Nanowire Arrays for Light Emitting Diode, Photodetector and Gas Sensor Applications
(
International Society for Optics and Photonics
,
2014
), p.
89871R
.
22.
J.
Hassan
,
M.
Mahdi
,
Y.
Yusof
,
H.
Abu-Hassan
,
Z.
Hassan
,
H.
Al-Attar
, and
A.
Monkman
,
Opt. Mater.
35
,
1035
(
2013
).
23.
J.
Hassan
,
M.
Mahdi
,
S.
Kasim
,
N. M.
Ahmed
,
H. A.
Hassan
, and
Z.
Hassan
,
Mater. Sci.-Poland
31
,
180
(
2013
).
24.
J.
Guo
,
J.
Zhang
,
M.
Zhu
,
D.
Ju
,
H.
Xu
, and
B.
Cao
,
Sens. Actuators, B
199
,
339
(
2014
).
25.
J.
Hassan
,
M.
Mahdi
,
C.
Chin
,
H.
Abu-Hassan
, and
Z.
Hassan
,
Sens. Actuators, B
176
,
360
(
2013
).
26.
M.
McCune
,
W.
Zhang
, and
Y.
Deng
,
Nano Lett.
12
,
3656
(
2012
).
27.
M.
Selvakumar
,
D. K.
Bhat
,
A. M.
Aggarwal
,
S. P.
Iyer
, and
G.
Sravani
,
Physica B
405
,
2286
(
2010
).
28.
Y.
Zhang
,
X.
Sun
,
L.
Pan
,
H.
Li
,
Z.
Sun
,
C.
Sun
, and
B. K.
Tay
,
Solid State Ionics
180
,
1525
(
2009
).
29.
X.
Li
,
Z.
Wang
,
Y.
Qiu
,
Q.
Pan
, and
P.
Hu
,
J. Alloys Compd.
620
,
31
(
2015
).
30.
X.
Zhang
,
A.
Cao
,
B.
Wei
,
Y.
Li
,
J.
Wei
,
C.
Xu
, and
D.
Wu
,
Chem. Phys. Lett.
362
,
285
(
2002
).
31.
X.
Li
,
X.
Zhang
,
L.
Ci
,
R.
Shah
,
C.
Wolfe
,
S.
Kar
,
S.
Talapatra
, and
P. M.
Ajayan
,
Nanotechnology
19
,
455609
(
2008
).
32.
S.
Talapatra
,
S.
Kar
,
S.
Pal
,
R.
Vajtai
,
L.
Ci
,
P.
Victor
,
M.
Shaijumon
,
S.
Kaur
,
O.
Nalamasu
, and
P.
Ajayan
,
Nat. Nanotechnol.
1
,
112
(
2006
).
33.
R.
Shah
,
X.
Zhang
, and
S.
Talapatra
,
Nanotechnology
20
,
395202
(
2009
).
34.
A. S.
Al-Asadi
,
L. A.
Henley
,
S.
Ghosh
,
A.
Quetz
,
I.
Dubenko
,
N.
Pradhan
,
L.
Balicas
,
N.
Perea-Lopez
,
V.
Carozo
, and
Z.
Lin
,
J. Appl. Phys.
119
,
084306
(
2016
).
35.
L.-L.
Yang
,
J.-H.
Yang
,
D.-D.
Wang
,
Y.-J.
Zhang
,
Y.-X.
Wang
,
H.-L.
Liu
,
H.-G.
Fan
, and
J.-H.
Lang
,
Physica E
40
,
920
(
2008
).
36.
R.
Yousefi
and
A.
Zak
,
Mater. Sci. Semicond. Process.
14
,
170
(
2011
).
37.
R.
Zhang
,
P.-G.
Yin
,
N.
Wang
, and
L.
Guo
,
Solid State Sci.
11
,
865
(
2009
).
38.
J.-H.
Park
,
J.
Kim
,
Y.
Kim
,
B.-T.
Lee
,
S.-J.
Jang
,
C.-K.
Moon
, and
H.-J.
Song
,
Appl. Phys. Lett.
83
,
1989
(
2003
).
39.
R.
Cuscó
,
E.
Alarcón-Lladó
,
J.
Ibanez
,
L.
Artús
,
J.
Jiménez
,
B.
Wang
, and
M. J.
Callahan
,
Phys. Rev. B
75
,
165202
(
2007
).
40.
M.
Selvakumar
and
D. K.
Bhat
,
Appl. Surf. Sci.
263
,
236
(
2012
).
41.
M.
Yang
,
Y.
Zhong
,
J.
Bao
,
X.
Zhou
,
J.
Wei
, and
Z.
Zhou
,
J. Mater. Chem. A
3
,
11387
(
2015
).
42.
M.
Selvakumar
and
D.
Krishna Bhat
,
J. Appl. Polym. Sci.
107
,
2165
(
2008
).
43.
M.
Saranya
,
R.
Ramachandran
, and
F.
Wang
,
J. Sci.: Adv. Mater. Devices
1
,
454
(
2016
).
44.
S.
Shi
,
X.
Zhuang
,
B.
Cheng
, and
X.
Wang
,
J. Mater. Chem. A
1
,
13779
(
2013
).
45.
N.
Venugopal
,
B.
Yang
, and
T.
Ko
,
Mater. Res. Innovations
16
,
96
(
2012
).
46.
Z.
Li
,
Z.
Zhou
,
G.
Yun
,
K.
Shi
,
X.
Lv
, and
B.
Yang
,
Nanoscale Res. Lett.
8
,
473
(
2013
).
47.
P.
Yang
,
X.
Xiao
,
Y.
Li
,
Y.
Ding
,
P.
Qiang
,
X.
Tan
,
W.
Mai
,
Z.
Lin
,
W.
Wu
, and
T.
Li
,
ACS Nano
7
,
2617
(
2013
).
48.
A. L. M.
Reddy
and
S.
Ramaprabhu
,
J. Phys. Chem. C
111
,
7727
(
2007
).
49.
A.-R.
Rautio
,
O.
Pitkänen
,
T.
Järvinen
,
A.
Samikannu
,
N.
Halonen
,
M.
Mohl
,
J.-P.
Mikkola
, and
K.
Kordas
,
J. Phys. Chem. C
119
,
3538
(
2015
).
50.
A. L. M.
Reddy
,
M. M.
Shaijumon
,
S. R.
Gowda
, and
P. M.
Ajayan
,
J. Phys. Chem. C
114
,
658
(
2009
).
51.
T.
Zhai
,
X.
Lu
,
Y.
Ling
,
M.
Yu
,
G.
Wang
,
T.
Liu
,
C.
Liang
,
Y.
Tong
, and
Y.
Li
,
Adv. Mater.
26
,
5869
(
2014
).
52.
R.
Kötz
,
M.
Hahn
, and
R.
Gallay
,
J. Power Sources
154
,
550
(
2006
).
53.
Y.
Yang
,
L.
Li
,
G.
Ruan
,
H.
Fei
,
C.
Xiang
,
X.
Fan
, and
J. M.
Tour
,
ACS Nano
8
,
9622
(
2014
).
54.
A.
Sharifi-Viand
,
M.
Mahjani
, and
M.
Jafarian
,
J. Electroanal. Chem.
671
,
51
(
2012
).
55.
X.
Liu
,
K.
Liu
,
W.
Zhou
,
L.
Li
,
K.
Zhou
, and
S.
Chen
,
Sci. Adv. Mater.
7
,
2336
(
2015
).
56.
W.
Wang
,
S.
Guo
,
I.
Lee
,
K.
Ahmed
,
J.
Zhong
,
Z.
Favors
,
F.
Zaera
,
M.
Ozkan
, and
C. S.
Ozkan
,
Sci. Rep.
4
,
4452
(
2014
).
57.
J. S.
Suroshe
and
S. S.
Garje
,
J. Mater. Chem. A
3
,
15650
(
2015
).
58.
Y.
Zhang
,
X.
Sun
,
L.
Pan
,
H.
Li
,
Z.
Sun
,
C.
Sun
, and
B. K.
Tay
,
J. Alloys Compd.
480
,
L17
(
2009
).
You do not currently have access to this content.