Intense gaseous ion beams are created from compact microwave plasmas confined in a multicusp magnetic field. The wave frequency (ω) is comparable to the electron plasma frequency (ωpe) and ⪢ the ion plasma frequency (ωpi); therefore, the heavier plasma (ions) are least disturbed by the high frequency electromagnetic waves. By changing the experimental gas, ion beams of different species are obtained, which expands the applicability of the ion beams. For the same applied accelerating potential, the controllability of the beam current owing to different velocities for different ionic species adds to the enhanced functionality. The ion beams are utilized to create a variety of microstructures by direct writing on metallic substrates, and microstructures of a high aspect ratio (ar = line width/depth) in the range of 100–1000 are created by varying the ion species and writing speed. For fixed species (Ga) and low current (1 pA) focused ion beam systems, typically ar ∼ 2.0 to 9.3 may be realized in a single beam scan. A parameter called current normalized force, defined as the momentum transfer per unit time, normalized with the beam current helps in understanding the different momentum transferred to the target sample upon impact by the ion beams of variable species. A mathematical formulation is developed to demonstrate this aspect.

1.
L. D.
Menard
and
J. M.
Ramsey
, “
Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling
,”
Nano Lett.
11
,
512
(
2011
).
2.
L. A.
Giannuzzi
and
F. A.
Stevie
, “
A review of focused ion beam milling techniques for tem specimen preparation
,”
Micron
30
,
197
(
1999
).
3.
J.
Lian
,
L.
Wang
,
X.
Sun
,
Q.
Yu
, and
R. C.
Ewing
, “
Patterning metallic nanostructures by ion-beam-induced dewetting and Rayleigh instability
,”
Nano Lett.
6
,
1047
(
2006
).
4.
G. M.
King
,
G.
Schurmann
,
D.
Branton
, and
J. A.
Golovchenko
, “
Nanometer patterning with ice
,”
Nano Lett.
5
,
1157
(
2005
).
5.
L.
Xu
,
S. C.
Vemula
,
M.
Jain
,
S. K.
Nam
,
V. M.
Donnelly
,
D. J.
Economou
, and
P.
Ruchhoeft
, “
Nanopantography: A new method for massively parallel nanopatterning over large areas
,”
Nano Lett.
5
,
2563
(
2005
).
6.
L.
Verslegers
,
P. B.
Catrysse
,
Z.
Yu
,
J. S.
White
,
E. S.
Barnard
,
M. L.
Brongersma
, and
S.
Fan
, “
Planar lenses based on nanoscale slit arrays in a metallic film
,”
Nano Lett.
9
,
235
(
2009
).
7.
J.
Gupta
,
J. M. E.
Harper
,
J. L.
Mauer
,
P. G.
Blauner
, and
D. A.
Smith
, “
Focused ion-beam imaging of grain-growth in copper thin-films
,”
Appl. Phys. Lett.
61
,
663
(
1992
).
8.
Y.
Hirayama
,
S.
Tarucha
,
Y.
Suzuki
, and
H.
Okamoto
, “
Fabrication of a GaAs quantum-well-wire structure by ga focused ion beam implantation and its optical properties
,”
Phys. Rev. B
37
,
2774
(
1988
).
9.
W.
Hong
,
H. J.
Woo
,
H. W.
Choi
,
Y. S.
Kim
, and
G. D.
Kim
, “
Optical property modification of PMMA by ion beam implantation
,”
Appl. Surf. Sci.
169–170
,
428
(
2001
).
10.
S.
Bhattacharjee
and
T.
Chowdhury
, “
Experimental investigation of transition from Fowler-Nordheim field emission to space-charge-limited flows in a nanogap
,”
Appl. Phys. Lett.
95
,
061501
(
2009
).
11.
S.
Bhattacharjee
,
M. K.
Harbola
,
A.
Pradhan
, and
A.
Modak
, “
Coexistence of tunneling and displacement currents in a nanogap driven with AC fields
,”
Appl. Phys. Lett.
100
,
153104
(
2012
).
12.
N. S.
Rajput
,
A.
Banerjee
, and
H. C.
Verma
, “
Electron and ion beam induced maneuvering of nanostructures: Phenomenon and applications
,”
Nanotechnology
22
,
485302
(
2011
).
13.
A.
Delobbe
,
O.
Salord
,
T.
Hrncir
,
A.
David
,
P.
Sudraud
, and
F.
Lopour
, “
High speed TEM sample preparation by Xe FIB
,”
Microsc. Microanal.
20
,
298
(
2014
).
14.
Q.
Ji
,
X.
Jiang
,
T. J.
King
,
K. N.
Leung
,
K.
Standiford
, and
S. B.
Wilde
, “
Improvement in brightness of multicusp plasma ion source
,”
J. Vac. Sci. Technol., B
20
,
2717
(
2002
).
15.
N. S.
Smith
,
W. P.
Skoczylas
,
S. M.
Kellogg
,
D. E.
Kinion
,
P. P.
Tesch
,
O.
Sutherland
,
A.
Aanesland
, and
R. W.
Boswell
, “
High brightness inductively coupled plasma source for high current focused ion beam applications
,”
J. Vac. Sci. Technol., B
24
,
2902
(
2006
).
16.
P. Y.
Nabhiraj
,
R.
Menon
,
G. M.
Rao
,
S.
Mohan
, and
R. K.
Bhandari
, “
Characterization of compact ICP ion source for focused ion beam applications
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
621
,
57
(
2010
).
17.
L.
Scipioni
,
D.
Stewart
,
D.
Ferranti
, and
A.
Saxonis
, “
Performance of multicusp plasma ion source for focused ion beam applications
,”
J. Vac. Sci. Technol., B
18
,
3194
(
2000
).
18.
F. Z.
Cui
and
Z. S.
Luo
,
Surf. Coat. Technol.
112
,
278
285
(
1999
).
19.
S. E.
Chung
,
W.
Park
,
H.
Park
,
K.
Yu
,
N.
Park
, and
S.
Kwon
, “
Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels
,”
Appl. Phys. Lett.
91
,
041106
(
2007
).
20.
K.
Kolari
,
V.
Saarela
, and
S.
Franssila
, “
Deep plasma etching of glass for fluidic devices with different mask materials
,”
J. Micromech. Microeng.
18
,
064010
(
2008
).
21.
J. V.
Mathew
and
S.
Bhattacharjee
, “
Compact electrostatic beam optics for multi element focused ion beams: Simulation and experiments
,”
Rev. Sci. Instrum.
82
,
013501
(
2011
).
22.
J. V.
Mathew
,
I.
Dey
, and
S.
Bhattacharjee
, “
Microwave guiding and intense plasma generation at subcutoff dimensions for focused ion beams
,”
Appl. Phys. Lett.
91
,
041503
(
2007
).
23.
S.
Bhattacharjee
and
S.
Paul
, “
Genesis of focused ion beams for plasma nanotechnology using a bounded microwave plasma source
,”
Jpn. J. Appl. Phys.
54
,
01AA06
(
2015
).
24.
S.
Paul
,
A.
Jayakiran
, and
S.
Bhattacharjee
, “
Observation of threshold energy and hysteresis in high current ion beam guiding and transmission through a micro-glass-capillary
,”
Appl. Phys. Lett.
101
,
223508
(
2012
).
25.
S.
Paul
and
S.
Bhattacharjee
, “
Investigation of hysteresis in high current ion beam guiding through micro-glass capillary: Time and dimension dependence
,”
J. Phys. D: Appl. Phys.
48
,
025204
(
2015
).
26.
S.
Paul
,
A.
Chowdhury
, and
S.
Bhattacharjee
, “
Effect of beam limiting aperture and collector potential on multi element focused ion beams
,”
Rev. Sci. Instrum.
83
,
02B714
(
2012
).
27.
J. V.
Mathew
,
A.
Chowdhury
, and
S.
Bhattacharjee
, “
Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems
,”
Rev. Sci. Instrum.
79
,
063504
(
2008
).
28.
S.
Bhattacharjee
and
H.
Amemiya
, “
Microwave plasma in a multicusp circular waveguide with a dimension below cutoff
,”
Jpn. J. Appl. Phys.
37
,
5742
(
1998
).
29.
S.
Bhattacharjee
and
H.
Amemiya
, “
Production of microwave plasma in narrow cros-sectional tubes; effect of the shape of cross section
,”
Rev. Sci. Instrum.
70
,
3332
(
1999
).
30.
S.
Bhattacharjee
,
Compact Plasma and Focused Ion Beams
(
CRC Press
,
2014
),
p. 81
.
31.
S.
Bhattacharjee
, “
Production of microwave plasma in a waveguide with a dimension below cutoff
,” Ph.D. thesis,
Saitama University
, Japan,
1999
, p.
65
.
32.
J. V.
Mathew
,
S.
Paul
, and
S.
Bhattacharjee
, “
Ion energy distribution near a plasma meniscus with beam extraction for multielement focused ion beams
,”
J. Appl. Phys.
107
,
093306
(
2010
).
33.
J. R.
Woodworth
,
P. A.
Miller
,
R. J.
Shul
,
I. C.
Abraham
,
B. P.
Aragon
,
T. W.
Hamilton
, and
C. G.
Willison
,
J. Appl. Phys.
92
,
716
(
2002
).
34.
S.
Bhattacharjee
,
I.
Dey
,
K. R.
Chowdhury
,
D.
Sahu
,
S.
Pandey
, and
S.
Chatterjee
, “
Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column
,”
Phys. Plasmas
21
,
012111
(
2014
).
35.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH Image to ImageJ: 25 years of ImageAnalysis
,”
Nat. Methods
9
,
671
(
2012
).
36.
F. S.
Jamaludin
,
M. F. M.
Sabri
, and
S. M.
Said
, “
Controlling parameters of focused ion beam (FIB) on high aspect ratio micro holes milling
,”
Microsyst. Technol.
19
,
1873
1888
(
2013
).
37.
B. S.
Archanjo
,
A. P. M.
Barboza
,
B. R. A.
Neves
,
L. M.
Malard
,
E. H. M.
Ferreira
,
J. C.
Brant
,
E. S.
Alves
,
F.
Plentz
,
V.
Carozo
,
B.
Fragneaud
,
I. O.
Maciel
,
C. M.
Almeida
,
A.
Jorio
, and
C. A.
Achete
, “
The use of a Ga+ focused ion beam to modify graphene for device applications
,”
Nanotechnology
23
,
255305
(
2012
).
38.
N. S.
Smith
,
D. E.
Kinion
,
P. P.
Tesch
, and
R. W.
Boswell
, “
A high brightness plasma source for focused ion beam applications
,”
Microsc. Microanal.
13
,
180
181
(
2007
).
39.
B. S.
Archanjo
,
B.
Fragneaud
,
L. G.
Cançado
,
D.
Winston
,
F.
Miao
,
C. A.
Achete
, and
G. M.
Ribeiro
, “
Graphene nanoribbon superlattices fabricated via He ion lithography
,”
Appl. Phys. Lett.
104
,
193114
(
2014
).
40.
J.
Notte
,
J.
Huang
, and
R.
Rickert
, “
The neon focused ion beam—Stabilizing the emission process
,”
Microsc. Microanal.
22
(Suppl
3
),
154–155
(
2016
).
41.
M. N.
Kelly
,
K.
Glowinski
,
N. T.
Nuhfer
, and
G. S.
Rohrer
, “
The five parameter grain boundary character distribution of α-Ti determined from three-dimensional orientation data
,”
Acta Mater.
111
,
22
30
(
2016
).
You do not currently have access to this content.