In this study, the time-dependent electromechanical response of lead-free piezoceramic 0.93(Na1/2Bi1/2)TiO3–0.07BaTiO3 to the applied electrical field was investigated. Large creep behavior was observed in both the polarization and the strain response, which can be attributed to the transition from a nonergodic relaxor to a state with a long-range ferroelectric order. This transition under a constant electric loading is a gradual process with a cascade behavior, observed under electric fields ranging from 1.2 to 1.6 kV/mm. The critical electric field to trigger this cascade effect was found to be approximately 1.15 kV/mm. This phenomenon indicates that the electric field-induced state transition is similar to a “self-catalyzed” behavior that depends on both the magnitude of electric loading and the holding time. Following the creep experiment, the electromechanical behavior was characterized to determine the completeness of the relaxor-ferroelectric transition.

1.
G. H.
Haertling
, “
Ferroelectric ceramics: History and technology
,”
J. Am. Ceram. Soc.
82
,
797
(
1999
).
2.
E.
Cross
, “
Materials science: Lead-free at last
,”
Nature
432
,
24
(
2004
).
3.
T.
Takenaka
,
K.
Maruyama
, and
K.
Sakata
, “
(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics
,”
Jpn. J. Appl. Phys., Part 1
30
,
2236
(
1991
).
4.
F. Z.
Yao
,
K.
Wang
,
W.
Jo
,
K. G.
Webber
,
T. P.
Comyn
,
J. X.
Ding
,
B.
Xu
,
L. Q.
Cheng
,
M. P.
Zheng
,
Y. D.
Hou
, and
J. F.
Li
, “
Diffused phase transition boosts thermal stability of high-performance lead-Free piezoelectrics
,”
Adv. Funct. Mater.
26
,
1217
(
2016
).
5.
J.
Rödel
,
W.
Jo
,
K. T. P.
Seifert
,
E.-M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
, “
Perspective on the development of lead-free piezoceramics
,”
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
6.
W.
Jo
,
J. E.
Daniels
,
J. L.
Jones
,
X.
Tan
,
P. A.
Thomas
,
D.
Damjanovic
, and
J.
Rödel
, “
Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics
,”
J. Appl. Phys.
109
,
014110
(
2011
).
7.
B.-J.
Chu
,
D.-R.
Chen
,
G.-R.
Li
, and
Q.-R.
Yin
, “
Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics
,”
J. Eur. Ceram. Soc.
22
,
2115
(
2002
).
8.
M.
Chen
,
Q.
Xu
,
B. H.
Kim
,
B. K.
Ahn
,
J. H.
Ko
,
W. J.
Kang
, and
O. J.
Nam
, “
Structure and electrical properties of (Na0.5Bi0.5)1xBaxTiO3 piezoelectric ceramics
,”
J. Eur. Ceram. Soc.
28
,
843
(
2008
).
9.
C.
Ma
,
H.
Guo
,
S. P.
Beckman
, and
X.
Tan
, “
Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics
,”
Phys. Rev. Lett.
109
,
107602
(
2012
).
10.
A.
Herabut
and
A.
Safari
, “
Processing and electromechanical properties of (Bi0.5Na0.5)(1−1.5x)LaxTiO3 ceramics
,”
J. Am. Ceram. Soc.
80
,
2954
(
1997
).
11.
G. O.
Jones
and
P. A.
Thomas
, “
The tetragonal phase of Na0.5Bi0.5TiO3 - A new variant of the perovskite structure
,”
Acta Crystallogr., Sect. B
56
,
426
(
2000
).
12.
J.
Harada
,
T.
Pedersen
, and
Z.
Barnea
, “
X-ray and neutron diffraction study of tetragonal barium titanate
,”
Acta Crystallogr., Sect. A
26
,
336
(
1970
).
13.
C.
Ma
,
H.
Guo
, and
X.
Tan
, “
A new phase boundary in (Bi1/2Na1/2)TiO3−BaTiO3 revealed via a novel method of electron diffraction analysis
,”
Adv. Funct. Mater.
23
,
5261
(
2013
).
14.
W.
Jo
and
J.
Rödel
, “
Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3x mol. % BaTiO3 piezoceramics
,”
Appl. Phys. Lett.
99
,
042901
(
2011
).
15.
M.
Hinterstein
,
L. A.
Schmitt
,
M.
Hoelzel
,
W.
Jo
,
J.
Rödel
,
H. J.
Kleebe
, and
M.
Hoffman
, “
Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics
,”
Appl. Phys. Lett.
106
,
222904
(
2015
).
16.
Y. J.
Dai
,
J. S.
Pan
, and
X. W.
Zhang
, “
Composition range of morphotropic phase boundary and electrical properties of NBT-BT system
,”
Key Eng. Mater.
336–338
,
206
(
2007
).
17.
C.
Xu
,
D.
Lin
, and
K. W.
Kwok
, “
Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics
,”
Solid State Sci.
10
,
934
(
2008
).
18.
J. E.
Daniels
,
W.
Jo
,
J.
Rödel
, and
J. L.
Jones
, “
Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric ceramic
,”
Appl. Phys. Lett.
95
,
032904
(
2009
).
19.
Q. D.
Liu
and
J. E.
Huber
, “
Creep in ferroelectrics due to unipolar electrical loading
,”
J. Eur. Ceram. Soc.
26
,
2799
(
2006
).
20.
D.
Zhou
and
M.
Kamlah
, “
Determination of room-temperature creep of soft lead zirconate titanate piezoceramics under static electric fields
,”
J. Appl. Phys.
98
,
104107
(
2005
).
21.
C.
Ma
,
X.
Tan
, and
H. J.
Kleebe
, “
In situ transmission electron microscopy study on the phase transitions in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics
,”
J. Am. Ceram. Soc.
94
,
4040
(
2011
).
22.
F. H.
Schader
,
Z.
Wang
,
M.
Hinterstein
,
J. E.
Daniels
, and
K. G.
Webber
, “
Stress-modulated relaxor-to-ferroelectric transition in lead-free (Na1/2Bi1/2)TiO3−BaTiO3 ferroelectrics
,”
Phys. Rev. B
93
,
134111
(
2016
).
23.
R.
Garg
,
B. N.
Rao
,
A.
Senyshyn
,
P. S. R.
Krishna
, and
R.
Ranjan
, “
Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact
,”
Phys. Rev. B
88
,
014103
(
2013
).
24.
J. E.
Daniels
,
W.
Jo
,
J.
Rödel
,
V.
Honkimäki
, and
J. L.
Jones
, “
Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: A combinatorial investigation
,”
Acta Mater.
58
,
2103
(
2010
).
25.
P. B.
Groszewicz
,
H.
Breitzke
,
R.
Dittmer
,
E.
Sapper
,
W.
Jo
,
G.
Buntkowsky
, and
J.
Rödel
, “
Nanoscale phase quantification in lead-free (Bi1/2Na1/2)TiO3−BaTiO3 relaxor ferroelectrics by means of 23Na NMR
,”
Phys. Rev. B
90
,
220104
(
2014
).
26.
R.
Dittmer
,
W.
Jo
,
E.
Aulbach
,
T.
Granzow
, and
J. R.
Roüdel
, “
Frequency-dependence of large-signal properties in lead-free piezoceramics
,”
J. Appl. Phys.
112
,
014101
(
2012
).
27.
D.
Zhou
and
M.
Kamlah
, “
Room-temperature creep of soft PZT under static electrical and compressive stress loading
,”
Acta Mater.
54
,
1389
(
2006
).
28.
A.
Ayrikyan
,
V.
Rojas
,
L.
Molina-Luna
,
M.
Acosta
,
J.
Koruza
, and
K. G.
Webber
, “
Enhancing electromechanical properties of lead-free ferroelectrics with bilayer ceramic/ceramic composites
,”
IEEE Trans. Ultrason. Ferroelectr., Freq. Control
62
,
997
(
2015
).
29.
D.
Chen
and
M.
Kamlah
, “
Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation
,”
Rev. Sci. Instrum.
86
,
113707
(
2015
).
30.
J.
Valasek
, “
Piezo-electric and allied phenomena in Rochelle salt
,”
Phys. Rev.
17
,
475
(
1921
).
31.
A.
von Hippel
, “
Ferroelectricity, domain structure, and phase transitions of barium titanate
,”
Rev. Mod. Phys.
22
,
221
(
1950
).
32.
W.
Jo
,
R.
Dittmer
,
M.
Acosta
,
J.
Zang
,
C.
Groh
,
E.
Sapper
,
K.
Wang
, and
J.
Rödel
, “
Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective
,”
J. Electroceram.
29
,
71
(
2012
).
33.
Q. D.
Liu
,
N. A.
Fleck
,
J. E.
Huber
, and
D. P.
Chu
, “
Birefringence measurements of creep near an electrode tip in transparent PLZT
,”
J. Eur. Ceram. Soc.
29
,
2289
(
2009
).
You do not currently have access to this content.