This paper is to study ramping turn-to-turn loss and magnetization loss of a no-insulation (NI) high temperature superconductor (HTS) pancake coil wound with (RE)Ba2Cu3Ox (REBCO) conductors. For insulated (INS) HTS coils, a magnetization loss occurs on superconducting layers during a ramping operation. For the NI HTS coil, additional loss is generated by the “bypassing” current on the turn-to-turn metallic contacts, which is called “turn-to-turn loss” in this study. Therefore, the NI coil's ramping loss is much different from that of the INS coil, but few studies have been reported on this aspect. To analyze the ramping losses of NI coils, a numerical method is developed by coupling an equivalent circuit network model and a H-formulation finite element method model. The former model is to calculate NI coil's current distribution and turn-to-turn loss, and the latter model is to calculate the magnetization loss. A test NI pancake coil is wound with REBCO tapes and the reliability of this model is validated by experiments. Then the characteristics of the NI coil's ramping losses are studied using this coupling model. Results show that the turn-to-turn loss is much higher than the magnetization loss. The NI coil's total ramping loss is much higher than that of its insulated counterpart, which has to be considered carefully in the design and operation of NI applications. This paper also discusses the possibility to reduce NI coil's ramping loss by decreasing the ramping rate of power supply or increasing the coil's turn-to-turn resistivity.

1.
Y.
Iwasa
,
J.
Bascuan
,
S.
Hahn
,
M.
Tomita
, and
Y.
Weijun
,
IEEE Appl. Supercond.
20
(
3
),
718
721
(
2010
).
2.
J.
Schwartz
,
T.
Effio
,
L.
Xiaotao
,
Q. V.
Le
,
A. L.
Mbaruku
,
H. J.
Schneider-Muntau
,
S.
Tengming
,
S.
Honghai
,
U. P.
Trociewitz
,
W.
Xiaorong
, and
H. W.
Weijers
,
IEEE Appl. Supercond.
18
(
2
),
70
81
(
2008
).
3.
H.
Song
,
P.
Brownsey
,
Z.
Yifei
,
J.
Waterman
,
T.
Fukushima
, and
D.
Hazelton
,
IEEE Appl. Supercond.
23
(
3
),
4600806
(
2013
).
4.
S.
Hahn
,
D. K.
Park
,
J.
Bascunan
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
21
(
3
),
1592
1595
(
2011
).
5.
S.
Hahn
,
D. K.
Park
,
K.
Kim
,
J.
Bascunan
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
22
(
3
),
4302405-4302405
(
2012
).
6.
A. V. G.
Dudarev
,
Yu. A.
Ilyin
,
V. E.
Keilin
,
N. Ph.
Kopeikin
,
V. I.
Shchrbakov
,
I. O.
Shugaev
, and
V. V.
Stepanov
, in
Proceedings of the Institute of Physics Conference Series
(
1997
), No. 158, pp.
1615
1619
.
7.
Y. H.
Choi
,
O. J.
Kwon
,
Y. G.
Kim
,
J. B.
Song
,
J. H.
Kim
,
H. M.
Kim
, and
H.
Lee
,
IEEE Appl. Supercond.
24
(
3
),
5
(
2014
).
8.
W. D.
Markiewicz
,
J. J.
Jaroszynski
,
D. V.
Abraimov
,
R. E.
Joyner
, and
A.
Khan
,
Supercond. Sci. Technol.
29
(
2
),
25001
(
2016
).
9.
Y.
Sangwon
,
K.
Jaemin
,
L.
Hunju
,
H.
Seungyong
, and
M.
Seung-Hyun
,
Supercond. Sci. Technol.
29
(
4
),
04LT04
(
2016
).
10.
J.-B.
Song
,
S.
Hahn
,
T.
Lecrevisse
,
J.
Voccio
,
J.
Bascunan
, and
Y.
Iwasa
,
Supercond. Sci. Technol.
28
(
11
),
114001
(
2015
).
11.
Y.
Wang
,
C.
Wan Kan
, and
J.
Schwartz
,
Supercond. Sci. Technol.
29
(
4
),
045007
(
2016
).
12.
S.
Choi
,
H. C.
Jo
,
Y. J.
Hwang
,
S.
Hahn
, and
T. K.
Ko
,
IEEE Appl. Supercond.
22
(
3
),
4904004
(
2012
).
13.
S.
Hahn
,
Y.
Kim
,
J.
Song
,
J.
Voccio
,
J.
Ling
,
J.
Bascunan
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
24
(
3
),
4602705
(
2014
).
14.
Y.
Iwasa
and
S.
Hahn
,
Appl. Phys. Lett.
103
(
25
),
253507
(
2013
).
15.
J.
Schwartz
,
Supercond. Sci. Technol.
29
(
5
),
050501
(
2016
).
16.
S.
Hahn
,
Y.
Kim
,
J.
Ling
,
J.
Voccio
,
D. K.
Park
,
J.
Bascunan
,
H.-J.
Shin
,
H.
Lee
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
23
(
3
),
4601705
(
2013
).
17.
Y. J.
Hwang
,
S.
Choi
,
H. C.
Jo
,
Y. H.
Choi
,
T. J.
Kim
,
S.
Hahn
, and
T. K.
Ko
,
IEEE Appl. Supercond.
23
(
3
),
4700604
(
2013
).
18.
K. L.
Kim
,
Y. H.
Choi
,
D. G.
Yang
,
J. B.
Songm
, and
H. G.
Lee
,
Supercond. Sci. Technol.
27
(
1
),
015001
(
2014
).
19.
Y.
Wang
and
H.
Song
,
Supercond. Sci. Technol.
29
(
7
),
075006
(
2016
).
20.
W.
Yawei
,
X.
Deqiang
,
S.
Hao
,
L.
Xu
,
S.
Jie
,
L.
Ke
,
H.
Zhiyong
,
J.
Zhijian
, and
L.
Zhuyong
,
IEEE Appl. Supercond.
25
(
3
),
4600305
(
2015
).
21.
S.
Jung-Bin
,
H.
Seungyong
,
K.
Youngjae
,
D.
Miyagi
,
J.
Voccio
,
J.
Bascunan
,
L.
Haigun
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
25
(
3
),
5202905
(
2015
).
22.
Z.
Ang
,
I.
Bejar
,
L.
Bottura
,
D.
Richter
,
M.
Sheehan
,
L.
Walckiers
, and
R.
Wolf
,
IEEE Appl. Supercond.
9
(
2
),
742
745
(
1999
).
23.
A. R.
Burgers
and
J. A.
Eikelboom
,
IEEE Trans. Magn.
28
(
1
),
850
853
(
1992
).
24.
F.
Grilli
and
S. P.
Ashworth
,
Supercond. Sci. Technol.
20
(
8
),
794
799
(
2007
).
25.
J.
Lu
,
E. S.
Choi
,
H.
Kandel
,
D. V.
Abraimov
, and
W. D.
Markiewicz
,
IEEE Appl. Supercond.
24
(
3
)
8200104
(
2014
).
26.
J. J.
Rabbers
,
A.
Dudarev
,
R.
Pengo
,
C.
Berriaud
, and
H. H. J.
ten Kate
,
IEEE Appl. Supercond.
16
(
2
),
549
552
(
2006
).
27.
M. D.
Sumption
,
E. W.
Collings
,
R. M.
Scanlan
, and
A.
Nijhuis
,
IEEE Appl. Supercond.
13
(
2
),
2376
2379
(
2003
).
28.
M.
Zhang
,
W.
Yuan
,
J.
Kvitkovic
, and
S.
Pamidi
,
Supercond. Sci. Technol.
28
(
11
),
115011
(
2015
).
29.
K.
Ryu
,
B. J.
Choi
, and
Y. H.
Chun
,
IEEE Appl. Supercond.
13
(
2
),
2360
2363
(
2003
).
30.
G.
Escamez
,
A.
Badel
,
P.
Tixador
,
B.
Ramdane
,
G.
Meunier
,
A.
Allais
, and
C. E.
Bruzek
,
IEEE Appl. Supercond.
25
(
3
),
8201505
(
2015
).
31.
W.
Yuan
,
A. M.
Campbell
, and
T. A.
Coombs
,
Supercond. Sci. Technol.
22
(
7
),
075028
(
2009
).
32.
Y.
Wang
,
H.
Song
,
D.
Xu
,
Z. Y.
Li
,
Z.
Jin
, and
Z.
Hong
,
Supercond. Sci. Technol.
28
(
4
),
045017
(
2015
).
33.
S.
Noguchi
,
R.
Itoh
,
S.
Hahn
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
24
(
3
),
4900504
(
2014
).
34.
W.
Tao
,
S.
Noguchi
,
W.
Xudong
,
I.
Arakawa
,
K.
Minami
,
K.
Monma
,
A.
Ishiyama
,
H.
Seungyong
, and
Y.
Iwasa
,
IEEE Appl. Supercond.
25
(
3
),
4603409
(
2015
).
35.
Z.
Hong
,
A. M.
Campbell
, and
T. A.
Coombs
,
Supercond. Sci. Technol.
19
(
12
),
1246
1252
(
2006
).
36.
Z.
Hong
,
Q.
Jiang
,
R.
Pei
,
A. M.
Campbell
, and
T. A.
Coombs
,
Supercond. Sci. Technol.
20
(
4
),
331
337
(
2007
).
37.
K.
Kajikawa
,
T.
Hayashi
,
R.
Yoshida
,
M.
Iwakuma
, and
K.
Funaki
,
IEEE Appl. Supercond.
13
(
2
),
3630
3633
(
2003
).
38.
J.
Rhyner
,
Physica C
212
(
3–4),
292
300
(
1993
).
39.
C.
Barth
,
G.
Mondonico
, and
C.
Senatore
,
Supercond. Sci. Technol.
28
,
045011
(
2015
).
40.
F.
Grilli
,
F.
Sirois
,
V. M. R.
Zermeno
, and
M.
Vojenciak
,
IEEE Appl. Supercond.
24
(
6
),
8000508
(
2014
).
41.
V. M. R.
Zermeno
,
A. B.
Abrahamsen
,
N.
Mijatovic
,
B. B.
Jensen
, and
M. P.
Sorensen
,
J. Appl. Phys.
114
(
17
),
173901
(
2013
).
42.
V. M. R.
Zermeno
and
F.
Grilli
,
Supercond. Sci. Technol.
27
(
4
),
044025
(
2014
).
43.
L.
Queval
,
V. M. R.
Zermeno
, and
F.
Grilli
,
Supercond. Sci. Technol.
29
(
2
),
024007
(
2016
).
44.
W.
Yuan
,
M. D.
Ainslie
,
W.
Xian
,
Z.
Hong
,
Y.
Chen
,
Y.
Yan
,
R.
Pei
, and
T. A.
Coombs
,
IEEE Appl. Supercond.
21
(
3
),
2441
(
2011
).
45.
J.
Šouc
,
E.
Pardo
,
M.
Vojenciak
, and
F.
Gömöry
,
Supercond. Sci. Technol.
22
(
1
),
015006
(
2008
).
46.
J.
Lu
,
R.
Goddard
,
K.
Han
, and
S.
Hahn
,
Supercond. Sci. Technol.
30
(
4
),
045005
(
2017
).
47.
X.
Wang
,
S.
Hahn
,
Y.
Kim
,
J.
Bascunan
,
J.
Voccio
,
H.
Lee
, and
Y.
Iwasa
,
Supercond. Sci. Technol.
26
(
3
),
035012
(
2013
).
You do not currently have access to this content.