Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (∼150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.
Skip Nav Destination
Article navigation
14 March 2017
Research Article|
March 14 2017
Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink
J. Arrese
;
J. Arrese
a)
MIND–IN2UB, Department of Engineering: Electronics,
Universitat de Barcelona
, Martí i Franquès 1, E-08028 Barcelona, Spain
Search for other works by this author on:
G. Vescio
;
G. Vescio
MIND–IN2UB, Department of Engineering: Electronics,
Universitat de Barcelona
, Martí i Franquès 1, E-08028 Barcelona, Spain
Search for other works by this author on:
E. Xuriguera;
E. Xuriguera
MIND–IN2UB, Department of Engineering: Electronics,
Universitat de Barcelona
, Martí i Franquès 1, E-08028 Barcelona, Spain
Search for other works by this author on:
B. Medina-Rodriguez;
B. Medina-Rodriguez
MIND–IN2UB, Department of Engineering: Electronics,
Universitat de Barcelona
, Martí i Franquès 1, E-08028 Barcelona, Spain
Search for other works by this author on:
A. Cornet;
A. Cornet
MIND–IN2UB, Department of Engineering: Electronics,
Universitat de Barcelona
, Martí i Franquès 1, E-08028 Barcelona, Spain
Search for other works by this author on:
A. Cirera
A. Cirera
MIND–IN2UB, Department of Engineering: Electronics,
Universitat de Barcelona
, Martí i Franquès 1, E-08028 Barcelona, Spain
Search for other works by this author on:
a)
Author to whom correspondence should be addressed. Electronic mail: xarrese@el.ub.edu
J. Appl. Phys. 121, 104904 (2017)
Article history
Received:
November 30 2016
Accepted:
February 21 2017
Citation
J. Arrese, G. Vescio, E. Xuriguera, B. Medina-Rodriguez, A. Cornet, A. Cirera; Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink. J. Appl. Phys. 14 March 2017; 121 (10): 104904. https://doi.org/10.1063/1.4977961
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
GaN-based power devices: Physics, reliability, and perspectives
Matteo Meneghini, Carlo De Santi, et al.
Celebrating notable advances in compound semiconductors: A tribute to Dr. Wladyslaw Walukiewicz
Kirstin Alberi, Junqiao Wu, et al.