In this paper, we address the problem of heat and electric charge transport in a thermoelectric nanoscaled layer when an electric current is applied. The analysis is based on constitutive equations of the Maxwell-Cattaneo type describing the time evolution of dissipative flows with transport and thermoelectric coefficients depending on the width of the layer. This introduces memory and nonlocal effects and consequently a wave-like behaviour of system's temperature. We study the effects of the application of an electric current in two cases, namely, a constant current and a pulsed current. The time evolution of the system and the stationary state are determined. Besides the well known supercooling effect obtained when the electric pulse is applied, our results show the existence of a similar effect during the transient due to the wave-like behaviour of the temperature. The thermal figure of merit (TFM) is calculated at the minimum temperature reached during the supercooling, both in the transient and the pulsed regime. The maximum value of TFM in the transient reaches 114 improving the value of long length scale devices by a factor of 100. When the electric pulse is applied, TFM is improved by a factor of 20 over long length scale devices. We use the spectral methods of solution which assure a well representation of wave behaviour of heat and electric charge in short time scales given their spectral convergence.

1.
Z.
Bian
and
A.
Shakouri
, “
Beating the maximum cooling limit with graded thermoelectric materials
,”
Appl. Phys. Lett.
89
,
212101
(
2006
).
2.
Z.
Bian
,
H.
Wang
,
Q.
Zhou
, and
A.
Shakouri
, “
Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials
,”
Phys. Rev. B
75
,
245208
(
2007
).
3.
E.
Müller
,
S.
Walczak
, and
W.
Seifert
, “
Optimization strategies for segmented Peltier coolers
,”
Phys. Status Solidi A
203
(
8
),
2128
2141
(
2006
).
4.
A.
Miner
,
A.
Majumdar
, and
U.
Ghoshal
, “
Thermoelectromechanical refrigeration based on transient thermoelectric effects
,”
Appl. Phys. Lett.
75
(
8
),
1176
1178
(
1999
).
5.
G. J.
Snyder
,
J. P.
Fleurial
,
T.
Caillat
,
R.
Yang
, and
G.
Chen
, “
Supercooling of Peltier cooler using a current pulse
,”
J. Appl. Phys.
92
,
1564
(
2002
).
6.
T.
Thonhauser
,
G. D.
Mahan
,
L.
Zikatanov
, and
J.
Roe
, “
Improved supercooling in transient thermoelectrics
,”
Appl. Phys. Lett.
85
(
15
),
3247
3249
(
2004
).
7.
J. N.
Mao
,
H. X.
Chen
,
H.
Jia
, and
X. L.
Qian
, “
The transient behavior of Peltier junctions pulsed with supercooling
,”
J. Appl. Phys.
112
,
014514
(
2012
).
8.
Q.
Zhou
,
Z.
Bian
, and
A.
Shakouri
, “
Pulsed cooling of inhomogeneous thermoelectric materials
,”
J. Phys. D: Appl. Phys.
40
,
4376
4381
(
2007
).
9.
O. Yu.
Titov
,
J. E.
Velazquez-Perez
, and
Yu. G.
Gurevich
, “
Mechanisms of the thermal electromotive force, heating and cooling in semiconductor structures
,”
Int. J. Therm. Sci.
92
,
44
49
(
2015
).
10.
M. P.
Gupta
,
M.
Sayer
,
S.
Mukhopadhyay
, and
S.
Kumar
, “
On-chip Peltier cooling using current pulse
,” in
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(IEEE,
2010
), pp.
1
7
.
11.
M. P.
Gupta
,
M.-H.
Sayer
,
S.
Mukhopadhyay
,
Member IEEE
, and
S.
Kumar
, “
Ultrathin thermoelectric devices for on-chip peltier cooling
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
1
,
1395
1405
(
2011
).
12.
B.
Alexandrov
,
O.
Sullivan
,
S.
Kumar
, and
S.
Mukhopadhyay
, “
Prospects of active cooling with integrated super-lattice based thin-film thermoelectric devices for mitigating hotspot challenges in microprocessors
,” in
17th Asia and South Pacific Design Automation Conference (ASP-DAC)
(
2012
), pp.
633
638
.
13.
M.
Manno
,
P.
Wang
, and
A.
Bar-Cohen
, “
Anticipatory thermoelectric cooling of a transient Germanium hotspot
,” in
ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
(
2013
), Vol.
2
, Paper No. IPACK2013-73186, p. V002T08A038.
14.
I.
Chowdhury
,
R.
Prasher
,
K.
Lofgreen
,
G.
Chrysler
,
S.
Narasimhan
,
R.
Mahajan
,
D.
Koester
,
R.
Alley
, and
R.
Venkatasubramanian
, “
On-chip cooling by superlattice-based thin-film thermoelectrics
,”
Nat. Nanotechnol.
4
,
235
238
(
2009
).
15.
M.
Ma
and
J.
Yu
, “
A numerical study on the temperature overshoot characteristic of a realistic thermoelectric module under current pulse operation
,”
Int. J. Heat Mass Transfer
72
,
234
241
(
2014
).
16.
H.
Lv
,
X.-D.
Wanga
,
T.-H.
Wang
, and
C.-H.
Cheng
, “
Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section
,”
Appl. Energy
164
,
501
508
(
2016
).
17.
J.
Ghazanfarian
and
A.
Abbassi
, “
Effect of boundary phonon scattering on dual-phase-lag model to simulate micro-and nano-scale heat conduction
,”
Int. J. Heat Mass Transfer
52
,
3706
3711
(
2009
).
18.
G.
De Aloysio
,
G.
D'Alessandro
, and
F.
de Monte
, “
An analytical development of the hyperbolic behaviour of micro thermoelectric coolers
,”
Math. Prob. Eng.
2015
,
697639
.
19.
M.
Torabi
,
K.
Zhang
,
N.
Karimi
, and
G. P.
Peterson
, “
Entropy generation in thermal systems with solid structures—A concise review
,”
Int. J. Heat Mass Transfer
97
,
917
931
(
2016
)
20.
B.
Vermeersch
,
J.-H.
Bahk
,
J.
Christofferson
, and
A.
Shakouri
, “
Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers
,”
J. Appl. Phys.
113
,
104502
(
2013
)
21.
F. X.
Alvarez
and
D.
Jou
, “
Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes
,”
Appl. Phys. Lett.
90
,
083109
(
2007
).
22.
G.
Lebon
,
H.
Machrafi
, and
M.
Grmela
, “
An extended irreversible thermodynamic modelling of size-dependent thermal conductivity of spherical nanoparticles dispersed in homogeneous media
,”
Proc. R. Soc., A
471
,
20150144
(
2015
).
23.
D.
Jou
,
J.
Casas-Vazquez
, and
G.
Lebon
,
Extended Irreversible Thermodynamics
, 4th ed. (
Springer
,
Berlin
,
2010
).
24.
H.
Machrafi
, “
An extended thermodynamic model for size-dependent thermoelectric properties at nanometric scales: Application to nanofilms, nanocomposites and thin nanocomposite films
,”
Appl. Math. Modell.
40
,
2143
2160
(
2016
).
25.
A.
Sellito
,
V. A.
Cimmelli
, and
D.
Jou
, “
Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires
,”
Int. J. Heat Mass Transfer
57
,
109
116
(
2013
).
26.
D. Y.
Tzou
, “
A unified field approach for heat conduction from macro to micro-scales
,”
ASME J. Heat Transfer
117
,
8
16
(
1995
).
27.
D. Y.
Tzou
,
Macro to Microscale Heat Transfer, The Lagging Behaviour
(
Taylor & Francis
.
Washington, DC, USA
,
1997
),
1
64
.
28.
J.
Ghazanfarian
,
Z.
Shomali
, and
A.
Abbassi
, “
Macro- to nanoscale heat and mass transfer: The lagging behavior
,”
Int. J. Thermophys.
36
,
1416
1467
(
2015
).
29.
D. W.
Tang
and
N.
Araki
, “
Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high speed heating of laser pulses
,”
Int. J. Heat Mass Transfer
42
,
855
860
(
1999
).
30.
H.
Askarizadeh
and
H.
Ahmadikia
, “
Analytical analysis of the dual-phase-lag heat transfer equation in a finite slab with periodic surface heat flux
,”
IJE Trans. C: Aspects.
27
(
6
),
971
978
(
2014
).
31.
M.
Torabi
and
K.
Zhang
, “
Multi-dimensional dual-phase-lag heat conduction in cylindrical coordinates: Analytical and numerical solutions
,”
Int. J. Heat Mass Transfer
78
,
960
966
(
2014
).
32.
E.
Gyory
and
F.
Márkus
, “
Size dependent thermal conductivity in nano-systems
,”
Thin Solid Films
565
,
89
93
(
2014
).
33.
J.
Ghazanfarian
and
Z.
Shomali
, “
Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor
,”
Int. J. Heat Mass Transfer
55
,
6231
6237
(
2012
).
34.
F.
Nasri
,
M. F. B.
Aissa
,
M. H.
Gazzah
, and
H.
Belmabrouk
, “
3D thermal conduction in a nanoscale Tri-Gate MOSFET based on single-phase-lag model
,”
Appl. Thermal Eng.
91
,
647
653
(
2015
).
35.
H.
Sun
,
R.
Du
,
W.
Dai
, and
Z.-Z.
Sun
, “
A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction
,”
Numer. Methods Partial Differ. Equations
31
,
1742
1768
(
2015
).
36.
R.
Saghatchi
and
J.
Ghazanfarian
, “
A novel SPH method for the solution of Dual-Phase-Lag model with temperature-jump boundary condition in nanoscale
,”
Appl. Math. Modell.
39
,
1063
1073
(
2015
).
37.
R. A.
Guyer
and
J. A.
Krumhansl
, “
Solution of the linearized phonon Boltzmann equation
,”
Phys. Rev.
148
,
766
788
(
1966
).
38.
R. A.
Guyer
and
J. A.
Krumhansl
, “
Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals
,”
Phys. Rev.
148
,
778
788
(
1966
).
39.
W.
Larecki
, “
Symmetric conservative form of low-temperature phonon gas hydrodynamics
,”
Il Nuovo Cimento D
14
,
141
176
(
1992
).
40.
Z.
Banach
and
W.
Larecki
, “
Nine-moment phonon hydrodynamics based on the modified Grad-type approach: Formulation
,”
J. Phys. A: Math. Gen.
37
,
9805
9829
(
2004
).
41.
Z.
Banach
and
W.
Larecki
, “
Nine-moment phonon hydrodynamics based on the maximum-entropy closure: One-dimensional flow
,”
J. Phys. A: Math. Gen.
38
,
8781
8802
(
2005
).
42.
Z.
Banach
and
W.
Larecki
, “
Chapman-Enskog method for a phonon gas with finite heat flux
,”
J. Phys. A
41
,
375502
(
2008
).
43.
F. X.
Álvarez
,
D.
Jou
, and
A.
Sellitto
, “
Phonon hydrodynamics and phonon-boundary scattering in nanosystems
,”
J. Appl. Phys.
105
,
014317
(
2009
).
44.
F. X.
Álvarez
,
V. A.
Cimmelli
,
D.
Jou
, and
A.
Sellitto
, “
Mesoscopic description of boundary effects in nanoscale heat transport
,”
Nanoscale Syst.: Math. Model., Theory Appl.
1
,
112
142
(
2012
).
45.
D.
Jou
,
M.
Criado-Sancho
, and
J.
Casas-Vázquez
, “
Heat fluctuations and phonon hydrodynamics in nanowires
,”
J. Appl. Phys.
107
,
084302
(
2010
).
46.
Y.
Guo
and
M.
Wang
, “
Phonon hydrodynamics and its applications in nanoscale heat transport
,”
Phys. Rep.
595
,
1
44
(
2015
).
47.
A.
Figueroa
and
F.
Vázquez
, “
Optimal performance and entropy generation transition from micro to nanoscaled thermoelectric layers
,”
Int. J. Heat Mass Transfer
71
,
724
731
(
2014
).
48.
H.
Machrafi
and
G.
Lebon
, “
General constitutive equations of heat transport at small length scales and high frequencies with extension to mass and electrical charge transport
,”
Appl. Math. Lett.
52
,
30
37
(
2016
).
49.
W. G.
Ma
,
H. D.
Wang
,
X.
Zhang
, and
W.
Wang
, “
Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films
,”
J. Appl. Phys.
108
,
064308
(
2010
).
50.
A.
Sellito
,
V. A.
Cimmelli
, and
D.
Jou
, “
Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems
,”
Physica D
241
,
1344
1350
(
2012
).
51.
J.
Solyom
,
Fundamentals of the Physics of Solids, Volume 2—Electronic Properties
(
Springer-Verlag
,
Berlin
,
2009
).
52.
A.
Figueroa
and
F.
Vázquez
, “
Spectral and finite difference solutions of the hyperbolic heat transport equation for thermoelectric thin films
,”
Appl. Math.
4
,
22
27
(
2013
).
53.
S.
Zhao
and
M. J.
Yedlin
, “
A new iterative Chebyshev spectral method for solving the elliptic equation ∇⋅ (σ∇u) = f
,”
J. Comput. Phys.
113
,
251
223
(
1994
).
54.
R.
Peyret
,
Spectral Methods for Incompressible Viscous Flow
, 5th ed. (
Springer-Verlag
,
New York
,
2002
).
55.
L.
Weber
and
E.
Gmelin
, “
Transport properties of silicon
,”
Appl. Phys. A
53
,
136
140
(
1991
).
56.
F.
Vázquez
and
J. A.
del Río
, “
Thermodynamic characterization of the diffusive transport to wave propagation transition in heat conducting thin films
,”
J. Appl. Phys.
112
,
123707
(
2012
).
57.
E. I.
Rogacheva
,
T. V.
Tavrina
,
O. N.
Nashchekina
,
S. N.
Grigorov
,
K. A.
Nasedkin
,
M. S.
Dresselhaus
, and
S. B.
Cronin
, “
Quantum size effects in PbSe quantum wells
,”
Appl. Phys. Lett.
80
,
2690
(
2002
).
58.
E. I.
Rogacheva
,
O. N.
Nashchekina
,
Y. O.
Vekhov
,
M. S.
Dresselhaus
, and
S. B.
Cronin
, “
Effect of thickness on the thermoelectric properties of PbS thin films
,”
Thin Solid Films
423
,
115
(
2003
).
59.
M. A.
Olivares-Robles
,
F.
Vázquez
, and
C.
Ramírez-López
, “
Optimization of two-stage Peltier modules: Structure and exergetic efficiency
,”
Entropy
14
,
1539
1552
(
2012
).
You do not currently have access to this content.