We present a multi-microscopy study of dislocations in InGaN, whereby the same threading dislocation was observed under several microscopes (atomic force microscopy, scanning electron microscopy, cathodoluminescence imaging and spectroscopy, transmission electron microscopy), and its morphological optical and structural properties directly correlated. We achieved this across an ensemble of defects large enough to be statistically significant. Our results provide evidence that carrier localization occurs in the direct vicinity of the dislocation through the enhanced formation of In-N chains and atomic condensates, thus limiting non-radiative recombination of carriers at the dislocation core. We highlight that the localization properties in the vicinity of threading dislocations arise as a consequence of the strain field of the individual dislocation and the additional strain field building between interacting neighboring dislocations. Our study therefore suggests that careful strain and dislocation distribution engineering may further improve the resilience of InGaN-based devices to threading dislocations. Besides providing a new understanding of dislocations in InGaN, this paper presents a proof-of-concept for a methodology which is relevant to many problems in materials science.

1.
I.
Vurgaftman
and
J. R.
Meyer
, “
Band parameters for nitrogen-containing semiconductors
,”
J. Appl. Phys.
94
,
3675
(
2003
).
2.
C.
Humphreys
, “
Solid-state lighting
,”
MRS Bull.
33
,
459
(
2008
).
3.
M.
Krames
,
O.
Shchekin
,
R.
Mueller-Mach
,
G.
Mueller
,
L.
Zhou
,
G.
Harbers
, and
M.
Craford
, “
Status and future of high-power light-emitting diodes for solid-state lighting
,”
J. Disp. Technol.
3
,
160
(
2007
).
4.
C.
Neufeld
,
N.
Toledo
,
S.
Cruz
,
M.
Iza
,
S.
DenBaars
, and
U.
Mishra
, “
High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap
,”
Appl. Phys. Lett.
93
,
143502
(
2008
).
5.
Y.
Zhang
,
M.
Kappers
,
D.
Zhu
,
F.
Oehler
,
F.
Gao
, and
C.
Humphreys
, “
The effect of dislocations on the efficiency of InGaN/GaN solar cells
,”
Sol. Energy Mater. Sol. Cells
117
,
279
(
2013
).
6.
X.
Cai
,
S.
Zeng
, and
B.
Zhang
, “
Fabrication and characterization of InGaN p-i-n homojunction solar cell
,”
Appl. Phys. Lett.
95
,
173504
(
2009
).
7.
E.
Matioli
and
C.
Weisbuch
, “
Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection
,”
J. Appl. Phys.
109
,
073114
(
2011
).
8.
T.
Akasaka
,
H.
Gotoh
,
T.
Saito
, and
T.
Makimoto
, “
High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers
,”
Appl. Phys. Lett.
85
,
3089
(
2004
).
9.
P.
Törmä
,
O.
Svensk
,
M.
Ali
,
S.
Suihkonen
,
M.
Sopanen
,
M.
Odnoblyudov
, and
V.
Bougrov
, “
Effect of InGaN underneath layer on MOVPE-grown InGaN/GaN blue LEDs
,”
J. Cryst. Growth
310
,
5162
(
2008
).
10.
M. J.
Davies
,
P.
Dawson
,
F. C.
Massabuau
,
R. A.
Oliver
,
M. J.
Kappers
, and
C. J.
Humphreys
, “
The effects of Si-doped prelayers on the optical properties of InGaN/GaN single quantum well structures
,”
Appl. Phys. Lett.
105
,
092106
(
2014
).
11.
I.
Aharonovich
,
A.
Woolf
,
K.
Russell
,
T.
Zhu
,
N.
Niu
,
M.
Kappers
,
R.
Oliver
, and
E.
Hu
, “
Low threshold, room-temperature microdisk lasers in the blue spectral range
,”
Appl. Phys. Lett.
103
,
021112
(
2013
).
12.
N.
Niu
,
A.
Woolf
,
D.
Wang
,
T.
Zhu
,
Q.
Quan
,
R.
Oliver
, and
E.
Hu
, “
Ultra-low threshold gallium nitride photonic crystal nanobeam laser
,”
Appl. Phys. Lett.
106
,
231104
(
2015
).
13.
T.
Sugahara
,
H.
Sato
,
M.
Hao
,
Y.
Naoi
,
S.
Kurai
, and
S.
Tottori
, “
Direct evidence that dislocations are non-radiative recombination centers in GaN
,”
Jpn. J. Appl. Phys., Part 1
37
,
398
(
1998
).
14.
S.
Rosner
,
E.
Carr
,
M.
Ludowise
,
G.
Girolami
, and
H.
Erikson
, “
Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition
,”
Appl. Phys. Lett.
70
,
420
(
1997
).
15.
D.
Cherns
,
S.
Henley
, and
F.
Ponce
, “
Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence
,”
Appl. Phys. Lett.
78
,
2691
(
2001
).
16.
Q.
Dai
,
M.
Schubert
,
M.
Kim
,
J.
Kim
,
E.
Schubert
,
D.
Koleske
,
M.
Crawford
,
S.
Lee
,
A.
Fischer
,
G.
Thaler
, and
M.
Banas
, “
Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities
,”
Appl. Phys. Lett.
94
,
111109
(
2009
).
17.
A.
Armstrong
,
T.
Henry
,
D.
Koleske
,
M.
Crawford
,
K.
Westlake
, and
S.
Lee
, “
Dependence of radiative efficiency and deep level defect incorporation on threading dislocation density for InGaN/GaN light emitting diodes
,”
Appl. Phys. Lett.
101
,
162102
(
2012
).
18.
N.
Sharma
,
P.
Thomas
,
D.
Tricker
, and
C.
Humphreys
, “
Chemical mapping and formation of V-defects in InGaN multiple quantum wells
,”
Appl. Phys. Lett.
77
,
1274
(
2000
).
19.
R.
Oliver
,
S.
Bennett
,
T.
Zhu
,
D.
Beesley
,
M.
Kappers
,
D.
Saxey
,
A.
Cerezo
, and
C.
Humphreys
, “
Microstructural origins of localization in InGaN quantum wells
,”
J. Phys. D: Appl. Phys.
43
,
354003
(
2010
).
20.
F.
Massabuau
,
L.
Trinh-Xuan
,
D.
Lodie
,
E.
Thrush
,
D.
Zhu
,
F.
Oehler
,
T.
Zhu
,
M.
Kappers
,
C.
Humphreys
, and
R.
Oliver
, “
Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells
,”
J. Appl. Phys.
113
,
073505
(
2013
).
21.
E.
Taylor
,
F.
Fang
,
F.
Oehler
,
P.
Edwards
,
M.
Kappers
,
K.
Lorenz
,
E.
Alves
,
C.
McAleese
,
C.
Humphreys
, and
R.
Martin
, “
Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates
,”
Semicond. Sci. Technol.
28
,
065011
(
2013
).
22.
S.
Rhode
,
W. Y.
Fu
,
M.
Moram
,
F.
Massabuau
,
M.
Kappers
,
C.
McAleese
,
F.
Oehler
,
C.
Humphreys
,
R.
Dusane
, and
S.
Sahonta
, “
Effect of defects on strain-relaxation in InxGa1-xN epilayers
,”
J. Appl. Phys.
116
,
103513
(
2014
).
23.
F.
Massabuau
,
S.-L.
Sahonta
,
L.
Trinh-Xuan
,
S.
Rhode
,
T.
Puchtler
,
M.
Kappers
,
C.
Humphreys
, and
R.
Oliver
, “
Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures
,”
Appl. Phys. Lett.
101
,
212107
(
2012
).
24.
J.
Bruckbauer
,
P.
Edwards
,
T.
Wang
, and
R.
Martin
, “
High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures
,”
Appl. Phys. Lett.
98
,
141908
(
2011
).
25.
V.
Narayanan
,
K.
Lorenz
,
W.
Kim
, and
S.
Mahajan
, “
Gallium nitride epitaxy on (0001) sapphire
,”
Philos. Mag. A
82
,
885
(
2002
).
26.
R.
Oliver
,
M.
Kappers
,
J.
Sumner
,
R.
Datta
, and
C.
Humphreys
, “
Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3
,”
J. Cryst. Growth
289
,
506
(
2006
).
27.
S.
Rhode
,
M.
Horton
,
M.
Kappers
,
S.
Zhang
,
C.
Humphreys
,
R.
Dusane
,
S.-L.
Sahonta
, and
M.
Moram
, “
Mg doping affects dislocation core structures in GaN
,”
Phys. Rev. Lett.
111
,
025502
(
2013
).
28.
P.
Edwards
and
R.
Martin
, “
Cathodoluminescence and nano-characterization of semiconductors
,”
Semicond. Sci. Technol.
26
,
064005
(
2011
).
29.
K.
Kanaya
and
S.
Okayama
, “
Penetration and energy-loss theory of electrons in solid targets
,”
J. Phys. D: Appl. Phys.
5
,
43
(
1972
).
30.
M.
Toth
and
M.
Phillips
, “
Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves
,”
Scanning
20
,
425
(
1998
).
31.
J.
Muth
,
J.
Lee
,
I.
Shmagin
,
R.
Kolbas
,
H.
Casey
,
B.
Keller
,
U.
Mishra
, and
S.
DenBaars
, “
Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements
,”
Appl. Phys. Lett.
71
,
2572
(
1997
).
32.
D.
Drouin
,
P.
Hovington
, and
R.
Gauvin
, “
CASINO: A new Monte Carlo code in C language for electron beam interactions—Part II: Tabulated values of the Mott cross section
,”
Scanning
19
,
20
(
1997
).
33.
T.
Smeeton
,
M.
Kappers
,
J.
Barnard
,
M.
Vickers
, and
C.
Humphreys
, “
Electron-beam-induced strain within InGaN quantum wells: False indium ‘cluster’ detection in the transmission electron microscope
,”
Appl. Phys. Lett.
83
,
5419
(
2003
).
34.
K.
Baloch
,
A.
Johnston-Peck
,
K.
Kisslinger
,
E.
Stach
, and
S.
Gradecak
, “
Revisiting the ‘In-clustering’ question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold
,”
Appl. Phys. Lett.
102
,
191910
(
2013
).
35.
S.
Rhode
,
M.
Horton
,
S.
Sahonta
,
M.
Kappers
,
S.
Haigh
,
T.
Pennycook
,
C.
McAleese
,
C.
Humphreys
,
R.
Dusane
, and
M.
Moram
, “
Dislocation core structures in (0001) InGaN
,”
J. Appl. Phys.
119
,
105301
(
2016
).
36.
T.
Song
, “
Strain relaxation due to V-pit formation in InxGa1-xN-GaN epilayers grown on sapphire
,”
J. Appl. Phys.
98
,
084906
(
2005
).
37.
G.
Orsal
,
Y.
El Gmili
,
N.
Fressengeas
,
J.
Streque
,
R.
Djerboub
,
T.
Moudakir
,
S.
Sundaram
,
A.
Ougazzaden
, and
J.
Salvestrini
, “
Bandgap energy bowing parameter of strained and relaxed InGaN layers
,”
Opt. Mater. Express
4
,
1030
(
2014
).
38.
Q.
Liu
,
J.
Lu
,
Z.
Gao
,
L.
Lai
,
R.
Qin
,
H.
Li
,
J.
Zhou
, and
G.
Li
, “
Electron localization and emission mechanism in wurtzite (Al, In, Ga)N alloys
,”
Phys. Status Solidi B
247
,
109
(
2010
).
39.
S.
Schulz
,
O.
Marquardt
,
C.
Coughlan
,
M.
Caro
,
O.
Brandt
, and
E.
O'Reilly
, “
Atomistic description of wave function localization effects in InxGa1-xN alloys and quantum wells
,”
Proc. SPIE
9357
,
93570C
(
2015
).
40.
S.
Chichibu
,
A.
Uedono
,
T.
Onuma
,
B.
Haskell
,
A.
Chakraborty
,
T.
Koyama
,
P.
Fini
,
S.
Keller
,
S.
Denbaars
,
J.
Speck
,
U.
Mishra
,
S.
Nakamura
,
S.
Yamaguchi
,
S.
Kamiyama
,
H.
Amano
,
I.
Akasaki
,
J.
Han
, and
T.
Sota
, “
Origin of defect-insensitive emission probability in In-containing (Al, In, Ga)N alloy semiconductors
,”
Nat. Mater.
5
,
810
816
(
2006
).
41.
M.
Horton
,
S.
Rhode
,
S.-L.
Sahonta
,
M.
Kappers
,
S.
Haigh
,
T.
Pennycook
,
C.
Humphreys
,
R.
Dusane
, and
M.
Moram
, “
Segregation of In to dislocations in InGaN
,”
Nano Lett.
15
,
923
(
2015
).
42.
T. P.
Peixoto
, The graph-tool python library,
2015
.
43.
P.
Hirsch
,
J.
Lozano
,
S.
Rhode
,
M.
Horton
,
M.
Moram
,
S.
Zhang
,
M.
Kappers
,
C.
Humphreys
,
A.
Yasuhara
,
E.
Okunishi
, and
P.
Nellist
, “
The dissociation of the [a + c] dislocation in GaN
,”
Philos. Mag.
93
,
3925
(
2013
).
You do not currently have access to this content.