Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.

1.
S. G.
Kumar
and
K. S. R. K.
Rao
,
Energy Environ. Sci.
7
,
45
(
2014
).
2.
J. I.
Hanoka
and
R. O.
Bell
,
Annu. Rev. Mater. Sci.
11
,
353
(
1981
).
3.
C. J.
Wu
and
D. B.
Wittry
,
J. Appl. Phys.
49
,
2827
(
1978
).
4.
W.
van Roosbroeck
,
J. Appl. Phys.
26
,
380
(
1955
).
5.
C.
Donolato
,
Appl. Phys. Lett.
43
,
120
(
1983
).
6.
C.
Donolato
,
Solid-State Elect.
25
,
1077
(
1982
).
7.
F.
Berz
and
H. K.
Kuiken
,
Solid-State Electron.
19
,
437
(
1976
).
8.
D. E.
Ioannou
and
C. A.
Dimitriadis
,
IEEE Trans. Electron Devices
29
,
445
(
1982
).
9.
K. L.
Luke
,
J. Appl. Phys.
80
,
5775
(
1996
).
10.
The assumption that all carriers within the depletion region are collected is contained in the boundary condition that the minority carrier density vanishes at the depletion region edge.
11.
C.
Li
,
Y.
Wu
,
J.
Poplawsky
,
T. J.
Pennycook
,
N.
Paudel
,
W.
Yin
,
S. J.
Haigh
,
M. P.
Oxley
,
A. R.
Lupini
,
M.
Al-Jassim
,
S. J.
Pennycook
, and
Y.
Yan
,
Phys. Rev. Lett.
112
,
156103
(
2014
).
12.
H. P.
Yoon
,
P. M.
Haney
,
D.
Ruzmetov
,
H.
Xua
,
M. S.
Leite
,
B. H.
Hamadani
,
A.
Talin
, and
N. B.
Zhitenev
,
Sol. Energy Mater. Sol. Cells
117
,
499
(
2013
).
13.
O.
Zywitzki
,
T.
Modes
,
H.
Morgner
,
C.
Metzner
,
B.
Siepchen
,
B.
Späth
,
C.
Drost
,
V.
Krishnakumar
, and
S.
Frauenstein
,
J. Appl. Phys.
114
,
163518
(
2013
).
14.
C.
Donolato
,
J. Appl. Phys.
54
,
1314
(
1983
).
15.
C.
Donolato
,
Mater. Sci. Eng., B
24
,
61
(
1994
).
16.
R.
Corkish
,
T.
Puzzer
,
A. B.
Sproul
, and
K. L.
Luke
,
J. Appl. Phys.
84
,
5473
(
1998
).
17.
J.
Chen
,
T.
Sekiguchi
,
D.
Yang
,
F.
Yin
,
K.
Kido
, and
S.
Tsurekawa
,
J. Appl. Phys.
96
,
5490
(
2004
).
18.
H.
Yoon
,
P. M.
Haney
,
J.
Schumacher
,
K.
Siebein
,
Y.
Yoon
, and
N. B.
Zhitenev
,
Microsc. Microanal.
20
,
544
(
2014
).
19.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
20.
P. M.
Haney
,
H. P.
Yoon
,
P.
Koirala
,
R. W.
Collins
, and
N. B.
Zhitenev
,
Nanotechnology
26
,
295401
(
2015
).
21.
K. L.
Luke
,
O. v.
Roos
, and
L.-j.
Cheng
,
J. Appl. Phys.
57
,
1978
(
1985
).
22.
A. E.
Grün
,
Z. Naturforsch.
12a
,
89
(
1957
).
23.
M.
Nichterwitz
and
T.
Unold
,
J. Appl. Phys.
114
,
134504
(
2013
).
24.
K.
Taretto
and
U.
Rau
,
J. Appl. Phys.
103
,
094523
(
2008
).
25.
R.
Hakimzadeh
and
S. G.
Bailey
,
J. Appl. Phys.
74
,
1118
(
1993
).
26.
G. A.
Hungerford
and
D. B.
Holt
,
Inst. Phys. Conf. Ser.
87
,
721
(
1987
).
27.
S.
Saraf
and
Y.
Rosenwaks
,
Surf. Sci.
574
,
L35
(
2005
).
You do not currently have access to this content.