Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

1.
M.
Shur
,
R.
Gaska
, and
A.
Khan
,
Mater. Sci. Forum
353-356
,
807
(
2001
).
2.
S.
Strite
and
H.
Morkoç
,
J. Vac. Sci. Technol. B
10
,
1237
(
1992
).
3.
S. N.
Mohammad
,
A. A.
Salvador
, and
H.
Morkoç
,
Proc. IEEE
83
,
1306
(
1995
).
4.
S. N.
Mohammad
and
H.
Morkoç
,
Prog. Quantum Electron.
20
,
361
(
1996
).
5.
S. P.
Denbaars
,
Proc. IEEE
85
,
1740
(
1997
).
6.
M. S.
Shur
,
Solid-State Electron.
42
,
2131
(
1998
).
7.
S. J.
Pearton
,
J. C.
Zolper
,
R. J.
Shul
, and
F.
Ren
,
J. Appl. Phys.
86
,
1
(
1999
).
8.
GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance
, edited by
M. S.
Shur
and
R. F.
Davis
(
World Scientific
,
River Edge
,
2004
).
9.
A.
Katz
and
M.
Franco
,
IEEE Microwave Mag.
11
,
S24
(
2010
).
10.
F.
Scholz
,
Semicond. Sci. Technol.
27
,
024002
(
2012
).
11.
B. J.
Baliga
,
Semicond. Sci. Technol.
28
,
074011
(
2013
).
12.
S.
Nakamura
and
M. R.
Krames
,
Proc. IEEE
101
,
2211
(
2013
).
13.
T. J.
Flack
,
B. N.
Pushpakaran
, and
S. B.
Bayne
,
J. Electron. Mater.
45
,
2673
(
2016
).
14.
R. S.
Pengelly
,
S. M.
Wood
,
J. W.
Milligan
,
S. T.
Sheppard
, and
W. L.
Pribble
,
IEEE Trans. Microwave Theory Tech.
60
,
1764
(
2012
).
15.
M. H.
Wong
,
S.
Keller
,
Nidhi
,
S.
Dasgupta
,
D. J.
Denninghoff
,
S.
Kolluri
,
D. F.
Brown
,
J.
Lu
,
N. A.
Fichtenbaum
,
E.
Ahmadi
,
U.
Singisetti
,
A.
Chini
,
S.
Rajan
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
,
Semicond. Sci. Technol.
28
,
074009
(
2013
).
16.
M.
Meneghini
,
L.-R.
Trevisanello
,
G.
Meneghesso
, and
E.
Zanoni
,
IEEE Trans. Device Mater. Reliab.
8
,
323
(
2008
).
17.
Y.
Fujimoto
,
J.
Nakanishi
,
T.
Yamada
,
O.
Ishii
, and
M.
Yamazaki
,
Prog. Quantum Electron.
37
,
185
(
2013
).
18.
C.-Y.
Yeh
,
Z. W.
Lu
,
S.
Froyen
, and
A.
Zunger
,
Phys. Rev. B
46
,
10086
(
1992
).
19.
T.
Lei
,
T. D.
Moustakas
,
R. J.
Graham
,
Y.
He
, and
S. J.
Berkowitz
,
J. Appl. Phys.
71
,
4933
(
1992
).
20.
Z.
Sitar
,
M. J.
Paisley
,
J.
Ruan
,
J. W.
Choyke
, and
R. F.
Davis
,
J. Mater. Sci. Lett.
11
,
261
(
1992
).
21.
G.
Ramírez-Flores
,
H.
Navarro-Contreras
,
A.
Lastras-Martínez
,
R. C.
Powell
, and
J. E.
Greene
,
Phys. Rev. B
50
,
8433
(
1994
).
22.
J.
Kolník
,
İ. H.
Oğuzman
,
K. F.
Brennan
,
R.
Wang
,
P. P.
Ruden
, and
Y.
Wang
,
J. Appl. Phys.
78
,
1033
(
1995
).
23.
B. E.
Foutz
,
L. F.
Eastman
,
U. V.
Bhapkar
, and
M. S.
Shur
,
Appl. Phys. Lett.
70
,
2849
(
1997
).
24.
K. H.
Ploog
,
O.
Brandt
,
B.
Yang
,
H.
Yang
, and
A.
Trampert
,
Proc. SPIE
3283
,
20
(
1998
).
25.
S. V.
Novikov
,
C. T.
Foxon
, and
A. J.
Kent
,
Phys. Status Solidi A
207
,
1277
(
2010
).
26.
C.
Mietze
,
M.
Landmann
,
E.
Rauls
,
H.
Machhadani
,
S.
Sakr
,
M.
Tchernycheva
,
F. H.
Julien
,
W. G.
Schmidt
,
K.
Lischka
, and
D. J.
As
,
Phys. Rev. B
83
,
195301
(
2011
).
27.
H.
Vilchis
and
V. M.
Sánchez-R
,
Mater. Sci. Semicond. Process.
37
,
68
(
2015
).
28.
M.-H.
Kim
,
F. S.
Juang
,
Y. G.
Hong
,
C. W.
Tu
, and
S.-J.
Park
,
12th International Conference on Molecular Beam Epitaxy
(MBE 2002) (
2002
), p.
207
.
29.
M.
Mizuta
,
S.
Fujieda
,
Y.
Matsumoto
, and
T.
Kawamura
,
Jpn. J. Appl. Phys., Part 2
25
,
L945
(
1986
).
30.
J. I.
Pankove
,
Mater. Res. Soc. Symp. Proc.
97
,
409
(
1987
).
31.
S.
Strite
,
J.
Ruan
,
Z.
Li
,
A.
Salvador
,
H.
Chen
,
D. J.
Smith
,
W. J.
Choyke
, and
H.
Morkoç
,
J. Vac. Sci. Technol. B
9
,
1924
(
1991
).
32.
H.
Liu
,
A. C.
Frenkel
,
J. G.
Kim
, and
R. M.
Park
,
J. Appl. Phys.
74
,
6124
(
1993
).
33.
T. S.
Cheng
,
L. C.
Jenkins
,
S. E.
Hooper
,
C. T.
Foxon
,
J. W.
Orton
, and
D. E.
Lacklison
,
Appl. Phys. Lett.
66
,
1509
(
1995
).
34.
D.
Schikora
,
M.
Hankeln
,
D. J.
As
,
K.
Lischka
,
T.
Litz
,
A.
Waag
,
T.
Buhrow
, and
F.
Henneberger
,
Phys. Rev. B
54
,
R8381
(
1996
).
35.
J. H.
Buß
,
J.
Rudolph
,
T.
Schupp
,
D. J.
As
,
K.
Lischka
, and
D.
Hägele
,
Appl. Phys. Lett.
97
,
062101
(
2010
).
36.
A. W.
Wood
,
R. R.
Collino
,
B. L.
Cardozo
,
F.
Naab
,
Y. Q.
Wang
, and
R. S.
Goldman
,
J. Appl. Phys.
110
,
124307
(
2011
).
37.
P.
Siddiqua
,
W. A.
Hadi
,
M. S.
Shur
, and
S. K.
O'Leary
,
J. Mater. Sci.: Mater. Electron.
26
,
4475
(
2015
).
38.
E. W. S.
Caetano
,
R. N.
Costa Filho
,
V. N.
Freire
, and
J. A. P.
da Costa
,
Solid State Commun.
110
,
469
(
1999
).
39.
C. G.
Rodrigues
,
A. R.
Vasconcellos
,
R.
Luzzi
,
V.
Lemos
, and
V. N.
Freire
,
Mater. Sci. Forum
338–342
,
1579
(
2000
).
40.
J. H.
Zhao
,
V.
Gruzinskis
,
M.
Weiner
,
M.
Pan
,
P.
Shiktorov
, and
E.
Starikov
,
Mater. Sci. Forum
338–342
,
1635
(
2000
).
41.
E.
Bellotti
,
M.
Farahmand
,
H.-E.
Nilsson
,
K. F.
Brennan
, and
P. P.
Ruden
,
Mater. Res. Soc. Symp.
622
,
T6.24.1
(
2000
).
42.
K. F.
Brennan
,
E.
Bellotti
,
M.
Farahmand
,
H.-E.
Nilsson
,
P. P.
Ruden
, and
Y.
Zhang
,
VLSI Des.
13
,
117
(
2001
).
43.
V.
Gružinskis
,
P.
Shiktorov
,
E.
Starikov
, and
J. H.
Zhao
,
Semicond. Sci. Technol.
16
,
798
(
2001
).
44.
J. M.
Barker
,
R.
Akis
,
T. J.
Thornton
,
D. K.
Ferry
, and
S. M.
Goodnick
,
Phys. Status Solidi A
190
,
263
(
2002
).
45.
R.
Brazis
and
R.
Raguotis
,
Opt. Quantum Electron.
38
,
339
(
2006
).
46.
W. A.
Hadi
,
M. S.
Shur
, and
S. K.
O'Leary
,
J. Mater. Sci.: Mater. Electron.
25
,
4675
(
2014
).
47.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
,
U. V.
Bhapkar
, and
L. F.
Eastman
,
J. Appl. Phys.
83
,
826
(
1998
).
48.
B. E.
Foutz
,
S. K.
O'Leary
,
M. S.
Shur
, and
L. F.
Eastman
,
J. Appl. Phys.
85
,
7727
(
1999
).
49.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
Appl. Phys. Lett.
87
,
222103
(
2005
).
50.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
J. Mater. Sci.: Mater. Electron.
17
,
87
(
2006
).
51.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
Appl. Phys. Lett.
88
,
152113
(
2006
).
52.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
J. Mater. Sci.: Mater. Electron.
21
,
218
(
2010
).
53.
W. A.
Hadi
,
P. K.
Guram
,
M. S.
Shur
, and
S. K.
O'Leary
,
J. Appl. Phys.
113
,
113709
(
2013
).
54.
P.
Siddiqua
,
W. A.
Hadi
,
A. K.
Salhotra
,
M. S.
Shur
, and
S. K.
O'Leary
,
J. Appl. Phys.
117
,
125705
(
2015
).
55.
P.
Siddiqua
and
S. K.
O'Leary
,
J. Appl. Phys.
119
,
095104
(
2016
).
56.

We elected to consider the sensitivity of the results to variations in the crystal temperature as the crystal temperature is the most commonly considered environmental factor in electron transport analyzes. We elected to consider the sensitivity of the results to variations in the doping concentration as doping concentration is the most common tunable material parameter considered in electron transport analyzes. Finally, we elected to consider the sensitivity of the results to variations in the non-parabolicity coefficient associated with the lowest energy conduction band valley as the nominal value of this parameter is not that well established, thereby allowing us to identify the expected range of electron transport results.

57.

In the Kane model, the energy band is assumed to be non-parabolic, spherical, and of the form 2k22m=E(1+αE), where k denotes the crystal momentum, E represents the energy, m is the effective mass of the electrons within this valley, and α is the non-parabolicity coefficient. For the specific case of the lowest energy conduction band valley, this non-parabolicity coefficient is given by α=1Eg(1mme)2 where m*, me, and Eg denote the conduction band electron effective mass, the free electron mass, and the energy gap, respectively.58 

58.
W.
Fawcett
,
A. D.
Boardman
, and
S.
Swain
,
J. Phys. Chem. Solids
31
,
1963
(
1970
).
59.

This selection of scattering mechanisms represents that usually considered in semi-classical Monte Carlo simulations of the electron transport within compound semiconductors.50 In order to enhance the tractability of our simulations, following the lead of Nag,60 a number of simplifications are introduced. Focusing on the treatment of the phonons themselves, the phonon occupancy and the nature of the interactions with the transiting electrons play major roles in shaping the character of the electron transport that occurs. We cast our analysis within the framework of the long phonon wave-length limit assumption, i.e., we treat the acoustic phonons as possessing energies that scale linearly with the magnitude of the phonon wave-vector while the optical phonons are treated as possessing energies that are independent of the phonon wave-vector. Recent analyzes, such as that by Mei et al.61 and Wu et al.,62 have suggested means whereby the anisotropy associated with the full-phonon-dispersion characteristics may be taken into account; the analyzes of Mei et al.61 and Wu et al.62 were pursued in order to understand the phonon transport within materials, wherein results acquired through the use of our long phonon wave-length limit assumption would prove inadequate. While some variation in our electron transport results would be expected with the full-phonon-dispersion characteristics taken into account, it is likely that the changes that would occur are relatively minor as the electrons in our simulations primarily occupy regions in k-space where the long phonon wave-length limit assumption works well. Thus, for the purposes of simplifying this analysis, we adopt this traditional long phonon wave-length limit assumption.

60.
B. R.
Nag
,
Electron Transport in Compound Semiconductors
(
Springer-Verlag
,
Berlin
,
1980
).
61.
S.
Mei
,
L. N.
Maurer
,
Z.
Aksamija
, and
I.
Knezevic
,
J. Appl. Phys.
116
,
164307
(
2014
).
62.
R.
Wu
,
R.
Hu
, and
X.
Luo
,
J. Appl. Phys.
119
,
145706
(
2016
).
63.

A 1017 cm−3 doping concentration is the usual nominal doping concentration employed for analyzes of the electron transport within the III–V nitride semiconductors; see, for example, O'Leary et al.50 Of course, the doping concentrations associated with an actual device may be much higher,64 and a determination as to the sensitivity of the results to variations in the doping concentration is pursued within the framework of this semi-classical electron transport analysis. Beyond the bulk case, dramatic enhancements in the free electron concentration in excess of the bulk doping concentration may be found in the vicinity of junctions separating the different semiconductor regions within a given device. These lie beyond the framework of the current analysis, however.

64.
H.
Ohta
,
N.
Kaneda
,
F.
Horikiri
,
Y.
Narita
,
T.
Yoshida
,
T.
Mishima
, and
T.
Nakamura
,
IEEE Electron Device Lett.
36
,
1180
(
2015
).
65.
B. K.
Ridley
,
W. J.
Schaff
, and
L. F.
Eastman
,
J. Appl. Phys.
96
,
1499
(
2004
).
66.
P.
Lugli
and
D. K.
Ferry
,
IEEE Trans. Electron Devices
32
,
2431
(
1985
).
67.
K.
Seeger
,
Semiconductor Physics: An Introduction
, 9th ed. (
Springer
,
Berlin
,
2004
).
68.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
,
U. V.
Bhapkar
, and
L. F.
Eastman
,
Solid State Commun.
105
,
621
(
1998
).
69.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
J. Electron. Mater.
32
,
327
(
2003
).
70.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
Solid State Commun.
150
,
2182
(
2010
).
71.
S. K.
O'Leary
,
B. E.
Foutz
,
M. S.
Shur
, and
L. F.
Eastman
,
Solid State Commun.
118
,
79
(
2001
).
72.

Given that hot-phonon effects have been neglected in this analysis, some deviations in the results attributable to these effects are to be expected for the higher doping concentrations.

73.
J. G.
Ruch
,
IEEE Trans. Electron Devices
19
,
652
(
1972
).
74.
M. S.
Shur
and
L. F.
Eastman
,
IEEE Trans. Electron Devices
26
,
1677
(
1979
).
You do not currently have access to this content.