Here, we report the atomic, electronic, and magnetic structures of small ZrmCon (m + n = 2, 4, 6, and 8) alloy clusters based on spin-polarized density functional theory under the plane wave based pseudo-potential approach. The ground state geometry and other low-lying stable isomers of each cluster have been identified using the cascade genetic algorithm scheme. On the basis of the relative energy, it is found that Zr2Co2 (for tetramer), Zr3Co3 (for hexamer), and Zr4Co4 (for octamer) are the most stable isomers than others. In order to underscore the hydrogen storage capacity of these small clusters, the hydrogen adsorption on the stable ZrmCon (m + n = 2, 4, 6, and 8) clusters has also been studied. The electronic structures of ZrmCon clusters with and without adsorbed hydrogen are described in terms of density of states spectra and charge density contours.

1.
N.
Rösch
and
G.
Pacchioni
, in
Clusters and Colloids – From Theory to Applications
, edited by
G.
Schmid
(
Chemie
,
Weinheim
,
1994
).
2.
Physics and Chemistry of Finite Systems: From Clusters to Crystals
, edited by
P.
Jena
,
S. N.
Khanna
, and
B. K.
Rao
(
Kluwer Academic
,
Dordrecht
,
1992
).
3.
C.
Majumder
and
S. K.
Kulshreshtha
,
Phys. Rev. B
70
,
245426
(
2004
).
4.
C.
Majumder
and
S. K.
Kulshreshtha
,
Phys. Rev. B
69
,
115432
(
2004
).
5.
S.
Nigam
,
C.
Majumderm
, and
S. K.
Kulshreshtha
,
J. Chem. Phys.
125
,
074303
(
2006
).
6.
C.
Majumder
and
S. K.
Kulshreshtha
,
Phys. Rev. B
73
,
155427
(
2006
).
7.
D.
Chattaraj
,
S. C.
Parida
,
S.
Dash
, and
C.
Majumder
,
Eur. Phys. J. D
68
,
302
(
2014
).
8.
J.
Jellinek
and
E. B.
Krissinel
, in
Theory of Atomic and Molecular Clusters
, edited by
J.
Jellinek
(
Springer
,
Berlin
,
1999
).
9.
G.
Zanti
and
D.
Peeters
,
J. Phys. Chem.
114
(
38
),
10345
(
2010
).
10.
C. O.
Poz Baron
, “
Computational studies of transition metal nanoalloys
,” Theoretical study of Pd-Au clusters, Ph.D. Theses, Springer,
2011
, Vol. 1, pp.
103
132
.
11.
X.
Wu
and
Y.
Dang
,
New J. Chem.
38
,
4893
(
2014
).
12.
F.
Munoz
,
A.
Varas
,
J.
Rogan
,
A. A.
Valdivia
, and
M.
Kiwi
,
Phys. Chem. Chem. Phys.
17
,
30492
(
2015
).
13.
X.
Lian
,
W. Q.
Tian
,
W.
Guo
,
F.
Liu
,
P.
Xiao
, and
Y.
Zhang
,
Eur. Phys. J. D
68
,
72
(
2014
).
14.
D. T.
Tran
and
R. L.
Johnston
,
Proc. R. Soc. A
467
,
2004
(
2011
).
15.
K.
Laasonen
,
E.
Panizon
,
D.
Bochiocchio
, and
R.
Ferrando
,
J. Phys. Chem. C
117
(
49
),
26405
(
2013
).
16.
K.
Shin
,
D. H.
Kim
,
S. C.
Yeo
, and
H. M.
Lee
,
Catal. Today
185
,
94
(
2012
).
17.
T.
Momin
and
A.
Bhowmick
,
J. Alloys Compd.
559
,
24
(
2013
).
18.
B. L.
Chittari
and
V.
Kumar
,
Phys. Rev. B
92
,
125442
(
2015
).
19.
C.
Majumder
and
S. K.
Kulshreshtha
,
Phys. Rev. B
69
,
075419
(
2004
).
20.
C.
Majumder
and
S. K.
Kulshrestha
,
Phys. Rev. B
70
,
125416
(
2004
).
21.
E. H. P.
Cordfunke
,
The Chemistry of Uranium
(
Elsevier
,
Amsterdam, London
,
1969
).
22.
T.
Yamamoto
,
T.
Yoneoka
,
S.
Kokubo
, and
M.
Yamawaki
,
Fusion Eng. Des.
7
,
363
(
1989
).
23.
H.
Drulis
,
W.
Petrynski
,
B.
Stalinski
, and
A.
Zygmunt
,
J. Less-Common Met.
83
,
87
(
1982
).
24.
M. V.
Susic
,
Int. J. Hydrogen Energy
13
,
173
(
1988
).
25.
R. D.
Penzhorn
,
M.
Devillers
, and
M.
Sirch
,
J. Nucl. Mater.
170
,
217
(
1990
).
26.
O.
Bernauer
,
Int. J. Hydrogen Energy
13
,
181
(
1988
).
27.
W. T.
Shmayda
,
A. G.
Heics
, and
N. P.
Kherani
,
J. Less-Common Met.
162
,
117
(
1990
).
28.
S.
Konishi
,
T.
Nagasaki
,
N.
Yokokawa
, and
Y.
Naruse
,
Fusion Eng. Des.
10
,
355
(
1989
).
29.
M.
Devillers
,
M.
Sirch
, and
R. D.
Penzhorn
,
Chem. Met.
4
,
631
(
1992
).
30.
S.
Konishi
,
T.
Nagasaki
, and
K.
Okuno
,
J. Nucl. Mater.
223
,
294
(
1995
).
31.
32.
G.
Li
,
H.
Zhou
, and
T.
Gao
,
J. Nucl. Mater.
424
,
220
(
2012
).
33.
D.
Chattaraj
,
S. C.
Parida
,
S.
Dash
, and
C.
Majumder
,
Int. J. Hydrogen Energy
37
,
18952
(
2012
).
34.
D.
Chattaraj
,
S. C.
Parida
,
S.
Dash
, and
C.
Majumder
,
J. Alloys Compd.
629
,
297
(
2015
).
35.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
36.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
37.
W.
Kohn
and
L.
Sham
,
Phys. Rev. A
140
,
A1133
(
1965
).
38.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
39.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
41.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
42.
S.
Bhattacharya
,
S.
Levchenko
,
L.
Ghiringhelli
, and
M.
Scheffler
,
Phys. Rev. Lett.
111
,
135501
(
2013
).
43.
S.
Bhattacharya
,
S.
Levchenko
,
L.
Ghiringhelli
, and
M.
Scheffler
,
New J. Phys.
16
,
123016
(
2014
).
44.
A. V.
Krukau1
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
45.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
46.
H.
Hellman
,
Introduction to Quantum Chemistry
(
Deuticke
,
Leipzig
,
1937
).
47.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
48.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
49.
A.
Arrington
,
T.
Blume
,
M. D.
Morse
,
M.
Doverstal
, and
U.
Sassenberg
,
J. Phys. Chem.
98
,
1398
(
1994
).
50.
C.
Wang
,
R.
Zhao
, and
J.
Han
,
J. Chem. Phys.
124
,
194301
(
2006
).
51.
A.
Kant
and
B.
Strauss
,
J. Chem. Phys.
41
,
3806
(
1964
).

Supplementary Material

You do not currently have access to this content.