Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured cell efficiency. Using first-principles calculations based on density functional theory, the optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are then screened with the aim of identifying potential absorber materials for photovoltaic applications. The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the current-voltage curve, the SLME is calculated from the maximum power output. The role of the nature of the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with II = Cd and Hg, and Cu2-II-SnS4 with II = Cd, Hg, and Zn have a higher theoretical efficiency compared with the materials currently used as absorber layer.

1.
H.
Katagiri
,
K.
Jimbo
,
S.
Yamada
,
T.
Kamimura
,
W. S.
Maw
,
T.
Fukano
,
T.
Ito
, and
T.
Motohiro
,
Appl. Phys. Express
1
,
041201
(
2008
).
2.
S.
Schorr
,
G.
Wagner
,
M.
Tovar
, and
D.
Sheptyakov
, in
Structure and Microstructure of Zn2x(CuBIII)1-xX2 Semiconductors (BIII = Ga,In; X = S,Se,Te)
(
Mater. Res. Soc. Symp. Proc.
,
2007
), Vol. 1012, p.
Y03
.
3.
O. V.
Parasyuk
,
I. D.
Olekseyuk
, and
L. V.
Piskach
,
J. Alloys Compd.
397
,
169
(
2005
).
4.
H.
Matsushita
,
T.
Maeda
,
A.
Katsui
, and
T.
Takizawa
,
J. Cryst. Growth
208
,
416
(
2000
).
5.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S. H.
Wei
,
Appl. Phys. Lett.
94
,
041903
(
2009
).
6.
O. M.
Madelung
,
Semiconductors: Data Handbook
, 3rd ed. (
Springer
,
New York
,
2004
).
7.
O. V.
Parasyuk
,
L. D.
Gulay
,
Y. E.
Romanyuk
, and
L. V.
Piskach
,
J. Alloys Compd.
329
,
202
(
2001
).
8.
T. K.
Todorov
,
J.
Tang
,
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
3
,
34
(
2013
).
9.
D.
Barkhouse
,
O.
Gunawan
,
T.
Gokmen
,
T.
Todorov
, and
D.
Mitzi
,
Prog. Photovoltaics
20
,
6
(
2012
).
10.
J. J.
Scragg
,
P. J.
Dale
, and
L. M.
Peter
,
Electrochem. Commun.
10
,
639
(
2008
).
11.
M.
Altosaar
,
J.
Raudoja
,
K.
Timmo
,
M.
Danilson
,
M.
Grossberg
,
J.
Krustok
, and
E.
Mellikov
,
Phys. Status Solidi A
205
,
167
(
2008
).
12.
S.
Siebentritt
,
Thin Solid Films
535
,
1
(
2013
).
13.
L.
Yu
and
A.
Zunger
,
Phys. Rev. Lett.
108
,
068701
(
2012
).
14.
W. J.
Yin
,
T.
Shi
, and
Y.
Yan
,
Adv. Mater.
26
,
4653
(
2014
).
15.
I. H.
Lee
,
J.
Lee
,
Y. J.
Oh
,
S.
Kim
, and
K. J.
Chang
,
Phys. Rev. B
90
,
115209
(
2014
).
16.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
17.
T.
Jäger
,
Y. E.
Romanyuk
,
B.
Bissig
,
F.
Pianezzi
,
S.
Nishiwaki
,
P.
Reinhard
,
J.
Steinhauser
,
J.
Schwenk
, and
A. N.
Tiwari
,
J. Appl. Phys.
117
,
225303
(
2015
).
18.
S.
Schorr
,
Sol. Energy Mater. Sol. Cells
95
,
1482
(
2011
).
19.
I. D.
Olekseyuk
,
L. D.
Gulay
,
I. V.
Dydchak
,
L. V.
Piskach
,
O. V.
Parasyuk
, and
O. V.
Marchuk
,
J. Alloys Compd.
340
,
141
(
2002
).
20.
M. L.
Liu
,
I. W.
Chen
,
F. Q.
Huang
, and
L. D.
Chen
,
Adv. Mater.
21
,
3808
(
2009
).
21.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
22.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
23.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
R558
(
1993
).
24.
G.
Kresse
and
J.
Hafner
,
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
25.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
26.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
27.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
28.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
30.
C. S.
Wang
and
W. E.
Pickett
,
Phys. Rev. Lett.
51
,
597
(
1983
).
31.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
32.
M.
Gajdos
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
73
,
045112
(
2006
).
33.
S.
Körbel
,
D.
Kammerlander
,
R.
Sarmiento-Pérez
,
C.
Attaccalite
,
M. A. L.
Marques
, and
S.
Botti
,
Phys. Rev. B
91
,
075134
(
2015
).
34.
K. A.
Johnson
and
N. W.
Ashcroft
,
Phys. Rev. B
58
,
15548
(
1998
).
35.
T. M.
Henderson
,
J.
Paier
, and
G. E.
Scuseria
,
Phys. Status Solidi B
248
,
767
(
2011
).
36.
F. L.
Tang
,
Z. X.
Zhu
,
H. T.
Xue
,
W. J.
Lu
,
Y. D.
Feng
,
Z. M.
Wang
, and
Y.
Wang
,
Physica B
407
,
4814
(
2012
).
37.
F. C.
Wan
,
F. L.
Tang
,
Z. X.
Zhu
,
H. T.
Xue
,
W. J.
Lu
,
Y. D.
Feng
, and
Z. Y.
Rui
,
Mater. Sci. Semicond. Process.
16
,
1422
(
2013
).
38.
M. A.
Green
,
Third Generation Photovoltaics: Advanced Solar Energy Conversion
(
Springer
,
New York
,
2003
).
39.
See http://rredc.nrel.gov/solar/spectra/am1.5/ for “Reference Solar Spectral Irradiance: Air Mass 1.5” (last accessed February 08,
2013
).
40.
T.
Tiedje
,
E.
Yablonovitch
,
G.
Cody
, and
B.
Brooks
,
IEEE Trans. Electron Devices
31
,
711
(
1984
).
41.
D.
Chen
and
N. M.
Ravindra
,
J. Alloys Compd.
579
,
468
(
2013
).
42.
P. U.
Bhaskar
,
G. S.
Babu
,
Y. B. K.
Kumar
, and
V. S.
Raja
,
Thin Solid Films
534
,
249
(
2013
).
43.
J.
Paier
,
R.
Asahi
,
A.
Nagoya
, and
G.
Kresse
,
Phys. Rev. B
79
,
115126
(
2009
).
44.
H.
Zhao
and
C.
Persson
,
Thin Solid Films
519
,
7508
(
2011
).
45.
H.
Shen
,
X. D.
Jiang
,
S.
Wang
,
Y.
Fu
,
C.
Zhou
, and
L. S.
Li
,
J. Mater. Chem.
22
,
25050
(
2012
).
46.
M. L.
Liu
,
F. Q.
Huang
,
L. D.
Chen
, and
I.
Chen
,
Appl. Phys. Lett.
94
,
202103
(
2009
).
47.
J. L.
Jambor
and
A. C.
Roberts
,
Am. Mineral.
84
,
1464
(
1999
).
48.
L. V.
Piskach
,
O. V.
Parasyuk
, and
Y. E.
Romanyuk
,
J. Alloys Compd.
299
,
227
(
2000
).
49.
W.
Schäfer
and
R.
Nitsche
,
Z. Kristallogr.
145
,
356
(
1977
).
50.
H.
Guan
,
J.
Zhao
,
X.
Wang
, and
F.
Yu
,
Chalcogenide Lett.
10
,
367
(
2013
).
51.
H.
Hahn
and
H.
Schulze
,
Naturwissenschaften
52
,
426
(
1965
).
52.
M.
Ibánez
,
D.
Cadavid
,
R.
Zamani
,
N. G.
Castelló
,
V. I.
Roca
,
W.
Li
,
A.
Fairbrother
,
J. D.
Prades
,
A.
Shavel
,
J.
Arbiol
,
A. P.
Rodríguez
,
J. R.
Morante
, and
A.
Cabot
,
Chem. Mater.
24
,
562
(
2012
).
53.
H.
Haeuseler
,
F. W.
Ohrendorf
, and
M.
Himmrich
,
Z. Naturforsch. B
46
,
1049
(
1991
).
54.
W.
Schäfer
and
R.
Nitsche
,
Mater. Res. Bull.
9
,
645
(
1974
).
55.
Y. K.
Kabalov
,
T. L.
Evstigneeva
, and
E. M.
Spiridonov
,
Crystallography reports
43
,
16
(
1998
).
56.
S. A.
Mkrtchyan
,
K. O.
Dovletov
,
E. G.
Zhukov
,
A. G.
Melikdzhanyan
, and
S.
Nuriev
,
Neorg. Mater.
24
,
1094
(
1988
).
57.
D.
Li
,
X.
Zhang
,
Z.
Zhu
,
H.
Zhang
, and
F.
Ling
,
Solid State Sci.
14
,
890
(
2012
).
58.
M.
Bercx
,
N.
Sarmadian
,
R.
Saniz
,
B.
Partoens
, and
D.
Lamoen
,
Phys. Chem. Chem. Phys.
18
,
20542
20549
(
2016
).
59.
W.
Wang
,
M. T.
Winkler
,
O.
Gunawan
,
T.
Gokmen
,
T. K.
Todorov
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
4
,
1301465
(
2014
).
You do not currently have access to this content.