We demonstrate the application of low-temperature cathodoluminescence (CL) with high lateral, depth, and spectral resolution to determine both the lateral (i.e., perpendicular to the incident primary electron beam) and axial (i.e., parallel to the electron beam) diffusion length of excitons in semiconductor materials. The lateral diffusion length in GaN is investigated by the decrease of the GaN-related luminescence signal when approaching an interface to Ga(In)N based quantum well stripes. The axial diffusion length in GaN is evaluated from a comparison of the results of depth-resolved CL spectroscopy (DRCLS) measurements with predictions from Monte Carlo simulations on the size and shape of the excitation volume. The lateral diffusion length was found to be (95 ± 40) nm for nominally undoped GaN, and the axial exciton diffusion length was determined to be (150 ± 25) nm. The application of the DRCLS method is also presented on a semipolar (112¯2) sample, resulting in a value of (70 ± 10) nm in p-type GaN.

1.
A.
Gustafsson
,
M.-E.
Pistol
,
L.
Montelius
, and
L.
Samuelson
,
J. Appl. Phys.
84
,
1715
(
1998
).
2.
A.
Gustafsson
,
Scanning
30
,
317
323
(
2008
).
3.
M.
Toth
and
M. R.
Phillips
,
Scanning
20
,
425
(
1998
).
4.
L. J.
Brillson
,
J. Phys. D: Appl. Phys.
45
,
183001
(
2012
).
5.
J.
Duboz
,
F.
Binet
,
D.
Dolfi
,
N.
Laurent
,
F.
Scholz
,
J.
Off
,
A.
Sohmer
,
O.
Briot
, and
B.
Gil
,
Mater. Sci. Eng., B
50
,
289
(
1997
).
6.
N.
Ino
and
N.
Yamamoto
,
Appl. Phys. Lett.
93
,
232103
(
2008
).
7.
C.
Donolato
,
Optik
52
,
19
(
1978
).
8.
S.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley Interscience
,
2007
).
9.
Z.-H.
Zhang
,
S. T.
Tan
,
W.
Liu
,
Z.
Ju
,
K.
Zheng
,
Z.
Kyaw
,
Y.
Ji
,
N.
Hasanov
,
X. W.
Sun
, and
H. V.
Demir
,
Opt. Express
21
,
4958
(
2013
).
10.
R.
Gauvin
and
D.
Drouin
,
Scanning
15
,
140
(
1993
).
11.
Z.
Czyzewski
,
D.
MacCallum
,
A.
Romig
, and
D.
Joy
,
J. Appl. Phys.
68
,
3066
(
1990
).
12.
J.
Henoc
and
F.
Maurice
,
in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy
, edited by
K.
Heinrich
,
D.
Newbury
, and
H.
Yakowitz
(
U.S. Dept. of Commerce, National Bureau of Standards
,
1976
), pp.
61
95
.
13.
N.
Ashcroft
,
I.
Mermin
, and
N.
David
,
in Solid State Physics
, edited by
D. G.
Crane
(
Saunders College Publishing
,
1976
).
14.
K.
Murata
,
T.
Matsukawa
, and
R.
Shimizu
,
Jpn. J. Appl. Phys., Part 1
10
,
678
(
1971
).
15.
V. W. L.
Chin
,
T. L.
Tansley
, and
T.
Osotchan
,
J. Appl. Phys.
75
,
7365
(
1994
).
16.
D.
Joy
and
S.
Luo
,
Scanning
11
,
176
(
1989
).
17.
M.
Berger
and
B.
Seltzer
,
Studies in Penetration of Charged Particles in Matter
, National Research Council Publication (
National Academy of Sciences-National Research Council
,
1964
).
18.
D.
Drouin
,
R.
Gauvin
, and
D.
Joy
,
Scanning
16
,
67
(
1994
).
19.
C.
Donolato
,
Phys. Status Solidi A
141
,
K131
(
1994
).
20.
H.
Fang
,
Z.
Yang
,
T.
Dai
,
L.
Sang
,
L.
Zhao
,
T.
You
, and
G.
Zhang
,
J. Appl. Phys.
103
,
014908
(
2008
).
21.
Y.
Galeuchet
and
P.
Roentgen
,
J. Cryst. Growth
107
,
147
(
1991
).
22.
K.
Tomika
,
P.
Mohan
,
J.
Noborisaka
,
S.
Hara
,
J.
Motohisa
, and
T.
Fukui
,
J. Cryst. Growth
298
,
644
(
2007
).
23.
E.
Yakimov
,
S.
Borisov
, and
S. I.
Zaitsev
,
Semiconductors
41
,
411
(
2007
).
24.
M.
Godlewski
,
E.
Łusakowska
,
E.
Goldys
,
M.
Phillips
,
T.
Böttcher
,
S.
Figge
,
D.
Hommel
,
P.
Prystawko
,
M.
Leszczynski
,
I.
Grzegory
, and
S.
Porowski
,
Appl. Surf. Sci.
223
,
294
(
2004
).
25.
S.
Hafiz
,
F.
Zhang
,
M.
Monavarian
,
V.
Avrutin
,
H.
Morkoç
,
U.
Özgür
,
S.
Metzner
,
F.
Bertram
,
J.
Christen
, and
B.
Gil
,
J. Appl. Phys.
117
,
013106
(
2015
).
26.
Y.
Kawakami
,
K.
Nishizuka
,
D.
Yamada
,
A.
Kaneta
,
M.
Funato
,
Y.
Narukawa
, and
T.
Mukai
,
Appl. Phys. Lett.
90
,
261912
(
2007
).
27.
F.
Scholz
,
Semicond. Sci. Technol.
27
,
024002
(
2012
).
28.
M.
Knab
,
M.
Hocker
,
T.
Felser
,
I.
Tischer
,
J.
Wang
,
F.
Scholz
, and
K.
Thonke
,
Phys. Status Solidi B
253
,
126
(
2016
).
You do not currently have access to this content.