In materials printing applications, the ability to generate fine droplets is critical for achieving high-resolution features. Other desirable characteristics are high print speeds, large stand-off distances, and minimal instrumentation requirements. In this work, a tunable electrohydrodynamic (EHD) printing technique capable of generating micron-sized droplets is reported. This method was used to print organic resistors on flat and uneven substrates. These ubiquitous electronic components were built using the commercial polymer-based conductive ink poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), which has been widely used in the manufacturing of organic electronic devices. Resistors with widths from 50 to 500 μm and resistances from 1 to 70 Ω/μm were created. An array of emission modes for EHD printing was identified. Among these, the most promising is the microdripping mode, where droplets 10 times smaller than the nozzle's inner diameter were created at frequencies in excess of 5 kHz. It was found that the ink flow rate, applied voltage, and stand-off distance all significantly influence the droplet generation frequency. In particular, the experimental results reveal that the frequency increases nonlinearly with the applied voltage. The non-Newtonian shear thinning behavior of PEDOT:PSS strongly influenced the droplet frequency. Finally, the topology of a 3-dimensional target substrate had a significant effect on the structure and function of a printed resistor.

1.
V.
Subramanian
,
J. M.
Fréchet
,
P. C.
Chang
,
D. C.
Huang
,
J. B.
Lee
,
S. E.
Molesa
,
A. R.
Murphy
,
D. R.
Redinger
, and
S. K.
Volkman
,
Proc. IEEE
93
,
1330
(
2005
).
2.
C. N.
Hoth
,
P.
Schilinsky
,
S. A.
Choulis
, and
C. J.
Brabec
,
Nano Lett.
8
,
2806
(
2008
).
3.
J.
Dijksman
,
P.
Duineveld
,
M.
Hack
,
A.
Pierik
,
J.
Rensen
,
J.-E.
Rubingh
,
I.
Schram
, and
M.
Vernhout
,
J. Mater. Chem.
17
,
511
(
2007
).
4.
M.
Caironi
,
E.
Gili
,
T.
Sakanoue
,
X.
Cheng
, and
H.
Sirringhaus
,
ACS Nano
4
,
1451
(
2010
).
5.
H.
Minemawari
,
T.
Yamada
,
H.
Matsui
,
J. y.
Tsutsumi
,
S.
Haas
,
R.
Chiba
,
R.
Kumai
, and
T.
Hasegawa
,
Nature
475
,
364
(
2011
).
6.
D.
Bailo
,
A.
Generosi
,
V. R.
Albertini
,
R.
Caminiti
,
R.
De Bettignies
, and
B.
Paci
,
Synth. Met.
162
,
808
(
2012
).
7.
P.
Wilson
,
C.
Lekakou
, and
J. F.
Watts
,
Org. Electron.
13
,
409
(
2012
).
8.
B.
Friedel
,
T. J.
Brenner
,
C. R.
McNeill
,
U.
Steiner
, and
N. C.
Greenham
,
Org. Electron.
12
,
1736
(
2011
).
9.
Z. A.
King
,
C. M.
Shaw
,
S. A.
Spanninga
, and
D. C.
Martin
,
Polymer
52
,
1302
(
2011
).
10.
S. A.
Mauger
,
L.
Chang
,
C. W.
Rochester
, and
A. J.
Moulé
,
Org. Electron.
13
,
2747
(
2012
).
11.
A.
Elschner
,
S.
Kirchmeyer
,
W.
Lovenich
,
U.
Merker
, and
K.
Reuter
,
PEDOT: Principles and Applications of an Intrinsically Conductive Polymer
(
CRC Press
,
2010
).
12.
S.
Kirchmeyer
and
K.
Reuter
,
J. Mater. Chem.
15
,
2077
(
2005
).
13.
J. A.
Lim
,
J. H.
Cho
,
Y. D.
Park
,
D. H.
Kim
,
M.
Hwang
, and
K.
Cho
,
Appl. Phys. Lett.
88
,
082102
(
2006
).
14.
R.
Mannerbro
,
M.
Ranlöf
,
N.
Robinson
, and
R.
Forchheimer
,
Synth. Met.
158
,
556
(
2008
).
15.
T.
Aernouts
,
P.
Vanlaeke
,
W.
Geens
,
J.
Poortmans
,
P.
Heremans
,
S.
Borghs
,
R.
Mertens
,
R.
Andriessen
, and
L.
Leenders
,
Thin Solid Films
451
,
22
(
2004
).
16.
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T.-Q.
Nguyen
,
M.
Dante
, and
A. J.
Heeger
,
Science
317
,
222
(
2007
).
17.
J.
Tarver
and
Y.
Loo
,
Handbook of Nanoscale Optics and Electronics
(
Elsevier
,
2010
), p.
107
.
18.
S.
Jung
,
A.
Sou
,
E.
Gili
, and
H.
Sirringhaus
,
Org. Electron.
14
,
699
(
2013
).
19.
A.
Chiolerio
,
P.
Rivolo
,
S.
Porro
,
S.
Stassi
,
S.
Ricciardi
,
P.
Mandracci
,
G.
Canavese
,
K.
Bejtka
, and
C. F.
Pirri
,
RSC Adv.
4
,
51477
(
2014
).
20.
S.-I.
Na
,
B.-K.
Yu
,
S.-S.
Kim
,
D.
Vak
,
T.-S.
Kim
,
J.-S.
Yeo
, and
D.-Y.
Kim
,
Sol. Energy Mater. Sol. Cells
94
,
1333
(
2010
).
21.
Y. H.
Kim
,
C.
Sachse
,
M. L.
Machala
,
C.
May
,
L.
Müller-Meskamp
, and
K.
Leo
,
Adv. Funct. Mater.
21
,
1076
(
2011
).
22.
J.
Kim
,
J.
Jung
,
D.
Lee
, and
J.
Joo
,
Synth. Met.
126
,
311
(
2002
).
23.
J.
Ouyang
,
C. W.
Chu
,
F. C.
Chen
,
Q.
Xu
, and
Y.
Yang
,
Adv. Funct. Mater.
15
,
203
(
2005
).
24.
S.
Jönsson
,
J.
Birgerson
,
X.
Crispin
,
G.
Greczynski
,
W.
Osikowicz
,
A. D.
Van Der Gon
,
W. R.
Salaneck
, and
M.
Fahlman
,
Synth. Met.
139
,
1
(
2003
).
25.
A. M.
Nardes
,
R. A.
Janssen
, and
M.
Kemerink
,
Adv. Funct. Mater.
18
,
865
(
2008
).
26.
Y.
Kim
,
J.
Lee
,
H.
Kang
,
G.
Kim
,
N.
Kim
, and
K.
Lee
,
Sol. Energy Mater. Sol. Cells
98
,
39
(
2012
).
27.
E.
Tekin
,
P. J.
Smith
, and
U. S.
Schubert
,
Soft Matter
4
,
703
(
2008
).
28.
29.
S.
Jung
and
I. M.
Hutchings
,
Soft Matter
8
,
2686
(
2012
).
30.
Y.
Liu
,
T.
Cui
, and
K.
Varahramyan
,
Solid-State Electron.
47
,
1543
(
2003
).
31.
B.
Chen
,
T.
Cui
,
Y.
Liu
, and
K.
Varahramyan
,
Solid-State Electron.
47
,
841
(
2003
).
32.
T.
Kawase
,
H.
Sirringhaus
,
R. H.
Friend
, and
T.
Shimoda
,
Adv. Mater.
13
,
1601
(
2001
).
33.
Z.
Xiong
and
C.
Liu
,
Org. Electron.
13
,
1532
(
2012
).
34.
I.
Clancy
,
G.
Amarandei
,
C.
Nash
, and
B.
Glowacki
,
J. Appl. Phys.
119
,
054903
(
2016
).
35.
S.
Jeong
,
H. C.
Song
,
W. W.
Lee
,
Y.
Choi
, and
B.-H.
Ryu
,
J. Appl. Phys.
108
,
102805
(
2010
).
36.
J.
Choi
,
Y.-J.
Kim
,
S.
Lee
,
S. U.
Son
,
H. S.
Ko
,
V. D.
Nguyen
, and
D.
Byun
,
Appl. Phys. Lett.
93
,
193508
(
2008
).
37.
V. D.
Nguyen
and
D.
Byun
,
Appl. Phys. Lett.
94
,
173509
(
2009
).
38.
J. B.
Szczech
,
C. M.
Megaridis
,
D. R.
Gamota
, and
J.
Zhang
,
IEEE Trans. Electron. Packag. Manuf.
25
,
26
(
2002
).
39.
J. S.
Kim
,
W. S.
Chung
,
K.
Kim
,
D. Y.
Kim
,
K. J.
Paeng
,
S. M.
Jo
, and
S. Y.
Jang
,
Adv. Funct. Mater.
20
,
3538
(
2010
).
40.
M.
Cloupeau
and
B.
Prunet-Foch
,
J. Aerosol Sci.
25
,
1021
(
1994
).
41.
I.
Hayati
,
A.
Bailey
, and
T. F.
Tadros
,
J. Colloid Interface Sci.
117
,
205
(
1987
).
43.
J.
Zeleny
, “
On the condition of instability of electrified drops, etc
,”
Proc. Camb. Phil. Soc.
18
,
71
(
1915
).
44.
J.
Fernández de La Mora
,
Annu. Rev. Fluid Mech.
39
,
217
(
2007
).
45.
H.
Kim
,
J.
Song
,
J.
Chung
, and
D.
Hong
,
J. Appl. Phys.
108
,
102804
(
2010
).
46.
K.
Sung
and
C. S.
Lee
,
J. Appl. Phys.
96
,
3956
(
2004
).
47.
G.
Taylor
,
Disintegration of Water Drops in an Electric Field
(
The Royal Society
,
1964
), p.
383
.
48.
M.
Mutoh
,
S.
Kaieda
, and
K.
Kamimura
,
J. Appl. Phys.
50
,
3174
(
1979
).
49.
R.
Juraschek
and
F.
Röllgen
,
Int. J. Mass Spectrom.
177
,
1
(
1998
).
50.
J.-U.
Park
,
M.
Hardy
,
S. J.
Kang
,
K.
Barton
,
K.
Adair
,
D.
Kishore Mukhopadhyay
,
C. Y.
Lee
,
M. S.
Strano
,
A. G.
Alleyne
, and
J. G.
Georgiadis
,
Nat. Mater.
6
,
782
(
2007
).
51.
C.-H.
Chen
,
D.
Saville
, and
I.
Aksay
,
Appl. Phys. Lett.
89
,
124103
(
2006
).
52.
H.-C.
Chang
and
L. Y.
Yeo
,
Electrokinetically Driven Microfluidics and Nanofluidics
(
Cambridge University Press
,
Cambridge, UK
,
2010
).
53.
J.
Huang
,
P. F.
Miller
,
J. S.
Wilson
,
A. J.
de Mello
,
J. C.
de Mello
, and
D. D.
Bradley
,
Adv. Funct. Mater.
15
,
290
(
2005
).
54.
L.
Rayleigh
, London, Edinburgh,
Dublin Philos. Mag. J. Sci.
14
,
184
(
1882
).
55.
E.
Davis
and
M.
Bridges
,
J. Aerosol Sci.
25
,
1179
(
1994
).
56.
B.
Vonnegut
and
R. L.
Neubauer
,
J. Colloid Sci.
7
,
616
(
1952
).
57.
D. J.
Griffiths
and
R.
College
,
Introduction to Electrodynamics
(
Prentice Hall
,
Upper Saddle River, NJ
,
1999
), Vol. 3.
58.
T.
Stöcker
,
A.
Köhler
, and
R.
Moos
,
J. Polym. Sci., Part B: Polym. Phys.
50
,
976
(
2012
).
59.
K.-C.
Chang
,
M.-S.
Jeng
,
C.-C.
Yang
,
Y.-W.
Chou
,
S.-K.
Wu
,
M. A.
Thomas
, and
Y.-C.
Peng
,
J. Electron. Mater.
38
,
1182
(
2009
).
You do not currently have access to this content.